Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heike Pospisil is active.

Publication


Featured researches published by Heike Pospisil.


Nature Genetics | 2002

Alternative splicing and genome complexity

David Brett; Heike Pospisil; Juan Valcárcel; Jens G. Reich; Peer Bork

Alternative splicing of mRNA allows many gene products with different functions to be produced from a single coding sequence. It has recently been proposed as a mechanism by which higher-order diversity is generated. Here we show, using large-scale expressed sequence tag (EST) analysis, that among seven different eukaryotes the amount of alternative splicing is comparable, with no large differences between humans and other animals.


Genomics | 2009

ASTD: The Alternative Splicing and Transcript Diversity database

Gautier Koscielny; Vincent Le Texier; Chellappa Gopalakrishnan; Vasudev Kumanduri; Jean-Jack Riethoven; Francesco Nardone; Eleanor Stanley; Christine Fallsehr; Oliver Hofmann; Meelis Kull; Eoghan D. Harrington; Stephanie Boue; Eduardo Eyras; Mireya Plass; Fabrice Lopez; William Ritchie; Virginie Moucadel; Takeshi Ara; Heike Pospisil; Alexander M. Herrmann; Jens G. Reich; Roderic Guigó; Peer Bork; Magnus von Knebel Doeberitz; Jaak Vilo; Winston Hide; Rolf Apweiler; Thangavel Alphonse Thanaraj; Daniel Gautheret

The Alternative Splicing and Transcript Diversity database (ASTD) gives access to a vast collection of alternative transcripts that integrate transcription initiation, polyadenylation and splicing variant data. Alternative transcripts are derived from the mapping of transcribed sequences to the complete human, mouse and rat genomes using an extension of the computational pipeline developed for the ASD (Alternative Splicing Database) and ATD (Alternative Transcript Diversity) databases, which are now superseded by ASTD. For the human genome, ASTD identifies splicing variants, transcription initiation variants and polyadenylation variants in 68%, 68% and 62% of the gene set, respectively, consistent with current estimates for transcription variation. Users can access ASTD through a variety of browsing and query tools, including expression state-based queries for the identification of tissue-specific isoforms. Participating laboratories have experimentally validated a subset of ASTD-predicted alternative splice forms and alternative polyadenylation forms that were not previously reported. The ASTD database can be accessed at http://www.ebi.ac.uk/astd.


Investigational New Drugs | 2007

In vitro chemosensitivity of freshly explanted tumor cells to pemetrexed is correlated with target gene expression

Axel-Rainer Hanauske; Ulrike Eismann; Olaf Oberschmidt; Heike Pospisil; Steve Hoffmann; Hartmut M. Hanauske-Abel; Doreen Ma; Victor J. Chen; Paolo Paoletti; Clet Niyikiza

SummaryAim of the studymRNA expression of genes involved in the mechanism of action of pemetrexed was correlated with in vitro chemosensitivity of freshly explanted human tumor specimens.Experimental designChemosensitivity to pemetrexed was studied in soft-agar. Multiplex rtPCR experiments for reduced folate carrier (RFC), folate receptor-α (FR-α), folylpolyglutamate synthetase (FPGS), thymidylate synthase (TS), dihydrofolate reductase (DHFR), glycinamide ribonucleotide formyl transferase (GARFT), mrp4, and mrp5 were performed in parallel. Correlations, threshold optimization, sensitivity, specificity, and efficiency were analyzed using the appropriate statistical methodologies.ResultsIn 61 samples, low levels of TS, GARFT, DHFR, and mrp4 gene expression significantly correlated with chemosensitivity to pemetrexed. Optimization analyses demonstrated threshold values of 144 copies for TS and six copies for mrp4 relative to 104 copies of β-actin.ConclusionsThese results form a rational basis for the design of clinical trials to evaluate the expression of these enzymes as predictors for treatment outcome.


Experimental Diabetes Research | 2008

Acute-Phase Serum Amyloid A as a Marker of Insulin Resistance in Mice

Ludger Scheja; Barbara Heese; Heike Zitzer; Mervyn D. Michael; Angela M. Siesky; Heike Pospisil; Ulrike Beisiegel; Klaus Seedorf

Acute-phase serum amyloid A (A-SAA) was shown recently to correlate with obesity and insulin resistance in humans. However, the mechanisms linking obesity-associated inflammation and elevated plasma A-SAA to insulin resistance are poorly understood. Using high-fat diet- (HFD-) fed mice, we found that plasma A-SAA was increased early upon HFD feeding and was tightly associated with systemic insulin resistance. Plasma A-SAA elevation was due to induction of Saa1 and Saa2 expression in liver but not in adipose tissue. In adipose tissue Saa3 was the predominant isoform and the earliest inflammatory marker induced, suggesting it is important for initiation of adipose tissue inflammation. To assess the potential impact of A-SAA on adipose tissue insulin resistance, we treated 3T3-L1 adipocytes with recombinant A-SAA. Intriguingly, physiological levels of A-SAA caused alterations in gene expression closely resembling those observed in HFD-fed mice. Proinflammatory genes (Ccl2, Saa3) were induced while genes critical for insulin sensitivity (Irs1, Adipoq, Glut4) were down-regulated. Our data identify HFD-fed mice as a suitable model to study A-SAA as a biomarker and a novel possible mediator of insulin resistance.


Nucleic Acids Research | 2004

EASED: Extended Alternatively Spliced EST Database

Heike Pospisil; Alexander Herrmann; Ralf H. Bortfeldt; Jens G. Reich

We established a database of alternative splice forms (ASforms) for nine eukaryotic organisms. ASforms are defined by comparing high-scoring ESTs with mRNA sequences using BLAST, taking known exon-intron information (from the Ensembl database). Filtering programs compare the ends of each aligned sequence pair for deletions or insertions in the EST sequence, which indicate the existence of alternative splice forms with respect to the exon-intron boundaries. Moreover, we defined the alternative splice profile of each human sequence. It indicates the number of alternatively spliced ESTs (NAE), the number of constitutively spliced ESTs (NCE) as well as the number of alternative splice sites (NSS) per mRNA. NAE and NCE correspond to the EST coverage and can be used as a quality indicator for the predicted alternative splice variants. The NSS value specifies the splice propensity of a gene. Additionally, the tissue type information of all ESTs was included. This allows (i) restriction of the search to certain tissues and (ii) calculation of the tissue-NAEs, tissue-NCEs and tissue-NSS. These scores are suitable for the estimation of tissue specificity of certain ASforms. Furthermore, the developmental stage and disease information of the ESTs is available. EASED is accessible at http://eased.bioinf.mdc-berlin.de/.


PLOS ONE | 2011

Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform

Ramesh Ummanni; Frederike Mundt; Heike Pospisil; Simone Venz; Christian Scharf; Christine Barett; Maria Fälth; Jens Köllermann; Reinhard Walther; Thorsten Schlomm; Guido Sauter; Carsten Bokemeyer; Holger Sültmann; Andreas Schuppert; Tim H. Brümmendorf; Stefan Balabanov

Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies.


PLOS ONE | 2011

Quantitative high-resolution genomic analysis of single cancer cells.

Juliane Hannemann; Sönke Meyer-Staeckling; Dirk Kemming; Iris Alpers; Simon A. Joosse; Heike Pospisil; Stefan Kurtz; Jennifer Görndt; Klaus Püschel; Sabine Riethdorf; Klaus Pantel; Burkhard Brandt

During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics.


BMC Genomics | 2006

Verification of predicted alternatively spliced Wnt genes reveals two new splice variants (CTNNB1 and LRP5) and altered Axin-1 expression during tumour progression

Heike Pospisil; Alexander Herrmann; Kristine Butherus; Stefan Pirson; Jens G. Reich; Wolfgang Kemmner

BackgroundSplicing processes might play a major role in carcinogenesis and tumour progression. The Wnt pathway is of crucial relevance for cancer progression. Therefore we focussed on the Wnt/β-catenin signalling pathway in order to validate the expression of sequences predicted as alternatively spliced by bioinformatic methods. Splice variants of its key molecules were selected, which may be critical components for the understanding of colorectal tumour progression and may have the potential to act as biological markers. For some of the Wnt pathway genes the existence of splice variants was either proposed (e.g. β-Catenin and CTNNB1) or described only in non-colon tissues (e.g. GSK3β) or hitherto not published (e.g. LRP5).ResultsBoth splice variants – normal and alternative form – of all selected Wnt pathway components were found to be expressed in cell lines as well as in samples derived from tumour, normal and healthy tissues. All splice positions corresponded totally with the bioinformatical prediction as shown by sequencing. Two hitherto not described alternative splice forms (CTNNB1 and LRP5) were detected. Although the underlying EST data used for the bioinformatic analysis suggested a tumour-specific expression neither a qualitative nor a significant quantitative difference between the expression in tumour and healthy tissues was detected. Axin-1 expression was reduced in later stages and in samples from carcinomas forming distant metastases.ConclusionWe were first to describe that splice forms of crucial genes of the Wnt-pathway are expressed in human colorectal tissue. Newly described splicefoms were found for β-Catenin, LRP5, GSK3β, Axin-1 and CtBP1. However, the predicted cancer specificity suggested by the origin of the underlying ESTs was neither qualitatively nor significant quantitatively confirmed. That let us to conclude that EST sequence data can give adequate hints for the existence of alternative splicing in tumour tissues. That no difference in the expression of these splice forms between cancerous tissues and normal mucosa was found, may indicate that the existence of different splice forms is of less significance for cancer formation as suggested by the available EST data. The currently available EST source is still insufficient to clearly deduce colon cancer specificity. More EST data from colon (tumour and healthy) is required to make reliable predictions.


Cancer Research | 2009

TOB1 Is Regulated by EGF-Dependent HER2 and EGFR Signaling, Is Highly Phosphorylated, and Indicates Poor Prognosis in Node-Negative Breast Cancer

Mike W. Helms; Dirk Kemming; Christopher H. Contag; Heike Pospisil; Kai Bartkowiak; Alice Wang; Sheng Yung Chang; Horst Buerger; Burkhard Brandt

Clinical and animal studies have shown that coexpression of the receptor tyrosine kinases HER2 and epidermal growth factor (EGF) receptor (EGFR) indicates a highly metastatic phenotype of breast cancer. In a cellular model of this phenotype using differential gene expression analysis, we identified TOB1 to be up-regulated depending on EGF stimulation and transduction through phosphorylation of HER2 tyrosine 1248. mRNA expression analysis of breast cancers from a cohort of node-negative patients showed significantly shortened distant metastasis-free survival for patients with high TOB1 expression. In subsequent tissue microarray studies of 725 clinical samples, high HER2 and EGF protein levels were significantly correlated with TOB1 expression in breast cancer, whereas EGFR and EGF levels correlated with TOB1 phosphorylation. We did not observe a correlation between TOB1 expression and cyclin D1, which was previously suggested to mediate the antiproliferative effect of unphosphorylated TOB1. A positive correlation of TOB1 phosphorylation status with proliferation marker Ki67 suggests that elevated TOB1 phosphorylation might abrogate the antiproliferative effect of TOB1 in breast cancer. This suggests a new regulatory role for TOB1 in cancer progression with particular significance in HER2- and/or EGFR-positive breast cancers.


BMC Cancer | 2010

Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468

Konstantin Agelopoulos; Burkhard Greve; Hartmut Schmidt; Heike Pospisil; Stefan Kurtz; Kai Bartkowiak; Antje Andreas; Marek Wieczorek; Eberhard Korsching; Horst Buerger; Burkhard Brandt

BackgroundIncreased transcription of oncogenes like the epidermal growth factor receptor (EGFR) is frequently caused by amplification of the whole gene or at least of regulatory sequences. Aim of this study was to pinpoint mechanistic parameters occurring during egfr copy number gains leading to a stable EGFR overexpression and high sensitivity to extracellular signalling. A deeper understanding of those marker events might improve early diagnosis of cancer in suspect lesions, early detection of cancer progression and the prediction of egfr targeted therapies.MethodsThe basal-like/stemness type breast cancer cell line subpopulation MDA-MB-468 CD44high/CD24-/low, carrying high egfr amplifications, was chosen as a model system in this study. Subclones of the heterogeneous cell line expressing low and high EGF receptor densities were isolated by cell sorting. Genomic profiling was carried out for these by means of SNP array profiling, qPCR and FISH. Cell cycle analysis was performed using the BrdU quenching technique.ResultsLow and high EGFR expressing MDA-MB-468 CD44+/CD24-/low subpopulations separated by cell sorting showed intermediate and high copy numbers of egfr, respectively. However, during cell culture an increase solely for egfr gene copy numbers in the intermediate subpopulation occurred. This shift was based on the formation of new cells which regained egfr gene copies. By two parametric cell cycle analysis clonal effects mediated through growth advantage of cells bearing higher egfr gene copy numbers could most likely be excluded for being the driving force. Subsequently, the detection of a fragile site distal to the egfr gene, sustaining uncapped telomere-less chromosomal ends, the ladder-like structure of the intrachromosomal egfr amplification and a broader range of egfr copy numbers support the assumption that dynamic chromosomal rearrangements, like breakage-fusion-bridge-cycles other than proliferation drive the gain of egfr copies.ConclusionProgressive genome modulation in the CD44+/CD24-/low subpopulation of the breast cancer cell line MDA-MB-468 leads to different coexisting subclones. In isolated low-copy cells asymmetric chromosomal segregation leads to new cells with regained solely egfr gene copies. Furthermore, egfr regain resulted in enhanced signal transduction of the MAP-kinase and PI3-kinase pathway. We show here for the first time a dynamic copy number regain in basal-like/stemness cell type breast cancer subpopulations which might explain genetic heterogeneity. Moreover, this process might also be involved in adaptive growth factor receptor intracellular signaling which support survival and migration during cancer development and progression.

Collaboration


Dive into the Heike Pospisil's collaboration.

Top Co-Authors

Avatar

Jens G. Reich

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

Alexander Herrmann

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge