Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helder I. Nakaya is active.

Publication


Featured researches published by Helder I. Nakaya.


Nature | 2011

Programming the magnitude and persistence of antibody responses with innate immunity

Sudhir Pai Kasturi; Ioanna Skountzou; Randy A. Albrecht; Dimitrios G. Koutsonanos; Tang Hua; Helder I. Nakaya; Rajesh Ravindran; Shelley Stewart; Munir Alam; Marcin Kwissa; Francois Villinger; Niren Murthy; John Steel; Joshy Jacob; Robert J. Hogan; Adolfo García-Sastre; Richard W. Compans; Bali Pulendran

Many successful vaccines induce persistent antibody responses that can last a lifetime. The mechanisms by which they do so remain unclear, but emerging evidence indicates that they activate dendritic cells via Toll-like receptors (TLRs). For example, the yellow fever vaccine YF-17D, one of the most successful empiric vaccines ever developed, activates dendritic cells via multiple TLRs to stimulate proinflammatory cytokines. Triggering specific combinations of TLRs in dendritic cells can induce synergistic production of cytokines, which results in enhanced T-cell responses, but its impact on antibody responses remain unknown. Learning the critical parameters of innate immunity that program such antibody responses remains a major challenge in vaccinology. Here we demonstrate that immunization of mice with synthetic nanoparticles containing antigens plus ligands that signal through TLR4 and TLR7 induces synergistic increases in antigen-specific, neutralizing antibodies compared to immunization with nanoparticles containing antigens plus a single TLR ligand. Consistent with this there was enhanced persistence of germinal centres and of plasma-cell responses, which persisted in the lymph nodes for >1.5 years. Surprisingly, there was no enhancement of the early short-lived plasma-cell response relative to that observed with single TLR ligands. Molecular profiling of activated B cells, isolated 7 days after immunization, indicated that there was early programming towards B-cell memory. Antibody responses were dependent on direct triggering of both TLRs on B cells and dendritic cells, as well as on T-cell help. Immunization protected completely against lethal avian and swine influenza virus strains in mice, and induced robust immunity against pandemic H1N1 influenza in rhesus macaques.


Nature Immunology | 2011

Systems biology of vaccination for seasonal influenza in humans

Helder I. Nakaya; Jens Wrammert; Eva K. Lee; Luigi Racioppi; Stephanie Marie-Kunze; W. Nicholas Haining; Anthony R. Means; Sudhir Pai Kasturi; Nooruddin Khan; Gui-Mei Li; Megan McCausland; Vibhu Kanchan; Kenneth E. Kokko; Shuzhao Li; Rivka Elbein; Aneesh K. Mehta; Alan Aderem; Kanta Subbarao; Rafi Ahmed; Bali Pulendran

Here we have used a systems biology approach to study innate and adaptive responses to vaccination against influenza in humans during three consecutive influenza seasons. We studied healthy adults vaccinated with trivalent inactivated influenza vaccine (TIV) or live attenuated influenza vaccine (LAIV). TIV induced higher antibody titers and more plasmablasts than LAIV did. In subjects vaccinated with TIV, early molecular signatures correlated with and could be used to accurately predict later antibody titers in two independent trials. Notably, expression of the kinase CaMKIV at day 3 was inversely correlated with later antibody titers. Vaccination of CaMKIV-deficient mice with TIV induced enhanced antigen-specific antibody titers, which demonstrated an unappreciated role for CaMKIV in the regulation of antibody responses. Thus, systems approaches can be used to predict immunogenicity and provide new mechanistic insights about vaccines.We used a systems biological approach to study innate and adaptive responses to influenza vaccination in humans, during 3 consecutive influenza seasons. Healthy adults were vaccinated with inactivated (TIV) or live attenuated (LAIV) influenza vaccines. TIV induced greater antibody titers and enhanced numbers of plasmablasts than LAIV. In TIV vaccinees, early molecular signatures correlated with, and accurately predicted, later antibody titers in two independent trials. Interestingly, the expression of Calcium/calmodulin-dependent kinase IV (CamkIV) at day 3 was inversely correlated with later antibody titers. Vaccination of CamkIV −/− mice with TIV induced enhanced antigen-specific antibody titers, demonstrating an unappreciated role for CaMKIV in the regulation of antibody responses. Thus systems approaches can predict immunogenicity, and reveal new mechanistic insights about vaccines.


Science | 2010

Activation of β-Catenin in Dendritic Cells Regulates Immunity Versus Tolerance in the Intestine

Santhakumar Manicassamy; Boris Reizis; Rajesh Ravindran; Helder I. Nakaya; Rosa Maria Salazar-Gonzalez; Yi-Chong Wang; Bali Pulendran

A Gut Feeling Special immune controls are necessary in the gut to prevent the immune system from reacting to the commensal microbiota and to food antigens. Dendritic cells (DCs) are important for maintaining gut tolerance because they help to keep T cells in an unresponsive state. However, in other environments, DCs activate T cells. What signals determine whether DCs induce T cell tolerance or activation? Manicassamy et al. (p. 849; see the Perspective by Mellman and Clausen) found that β-catenin–dependent signaling is required for maintaining DC-mediated gut tolerance in mice. Wnt ligands were expressed in the gut, and β-catenin signaling was activated in DCs in the small and large intestines but not in the spleen. When β-catenin was specifically deleted from DCs in mice, the frequency of regulatory T cells and anti-inflammatory cytokines was reduced, whereas the frequency of pro-inflammatory T helper 1 and T helper 17 cells and their associated cytokines was increased. Mice lacking β-catenin in dendritic cells also exhibited enhanced susceptibility in a mouse model of colitis. Gut-specific signaling pathways regulate immune cell–mediated tolerance in the intestine. Dendritic cells (DCs) play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens. However, the intracellular signaling networks that program DCs to become tolerogenic remain unknown. We report here that the Wnt–β-catenin signaling in intestinal dendritic cells regulates the balance between inflammatory versus regulatory responses in the gut. β-catenin in intestinal dendritic cells was required for the expression of anti-inflammatory mediators such as retinoic acid–metabolizing enzymes, interleukin-10, and transforming growth factor–β, and the stimulation of regulatory T cell induction while suppressing inflammatory effector T cells. Furthermore, ablation of β-catenin expression in DCs enhanced inflammatory responses and disease in a mouse model of inflammatory bowel disease. Thus, β-catenin signaling programs DCs to a tolerogenic state, limiting the inflammatory response.


Nature | 2016

Defining CD8 + T cells that provide the proliferative burst after PD-1 therapy

Se Jin Im; Masao Hashimoto; Michael Y. Gerner; Junghwa Lee; Haydn T. Kissick; Matheus C. Bürger; Qiang Shan; J. Scott Hale; Judong Lee; Tahseen Nasti; Arlene H. Sharpe; Gordon J. Freeman; Ronald N. Germain; Helder I. Nakaya; Hai-Hui Xue; Rafi Ahmed

Chronic viral infections are characterized by a state of CD8+ T-cell dysfunction that is associated with expression of the programmed cell death 1 (PD-1) inhibitory receptor. A better understanding of the mechanisms that regulate CD8+ T-cell responses during chronic infection is required to improve immunotherapies that restore function in exhausted CD8+ T cells. Here we identify a population of virus-specific CD8+ T cells that proliferate after blockade of the PD-1 inhibitory pathway in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). These LCMV-specific CD8+ T cells expressed the PD-1 inhibitory receptor, but also expressed several costimulatory molecules such as ICOS and CD28. This CD8+ T-cell subset was characterized by a unique gene signature that was related to that of CD4+ T follicular helper (TFH) cells, CD8+ T cell memory precursors and haematopoietic stem cell progenitors, but that was distinct from that of CD4+ TH1 cells and CD8+ terminal effectors. This CD8+ T-cell population was found only in lymphoid tissues and resided predominantly in the T-cell zones along with naive CD8+ T cells. These PD-1+CD8+ T cells resembled stem cells during chronic LCMV infection, undergoing self-renewal and also differentiating into the terminally exhausted CD8+ T cells that were present in both lymphoid and non-lymphoid tissues. The proliferative burst after PD-1 blockade came almost exclusively from this CD8+ T-cell subset. Notably, the transcription factor TCF1 had a cell-intrinsic and essential role in the generation of this CD8+ T-cell subset. These findings provide a better understanding of T-cell exhaustion and have implications in the optimization of PD-1-directed immunotherapy in chronic infections and cancer.


Oncogene | 2004

Antisense intronic non-coding RNA levels correlate to the degree of tumor differentiation in prostate cancer

Eduardo M. Reis; Helder I. Nakaya; Rodrigo Louro; F. Canavez; Áurea V F Flatschart; Giulliana T. Almeida; Camila M Egidio; Apuã C.M. Paquola; Abimael A. Machado; Fernanda Festa; Denise Yamamoto; Renato Alvarenga; Camille C. Caldeira da Silva; Glauber Costa Brito; Sérgio D Simon; Carlos Alberto Moreira-Filho; Katia R. M. Leite; Luiz H. Camara-Lopes; Franz S. de Campos; Etel Gimba; Giselle M Vignal; Mari Cleide Sogayar; Marcello A. Barcinski; Aline M. da Silva; Sergio Verjovski-Almeida

A large fraction of transcripts are expressed antisense to introns of known genes in the human genome. Here we show the construction and use of a cDNA microarray platform enriched in intronic transcripts to assess their biological relevance in pathological conditions. To validate the approach, prostate cancer was used as a model, and 27 patient tumor samples with Gleason scores ranging from 5 to 10 were analyzed. We find that a considerably higher fraction (6.6%, [23/346]) of intronic transcripts are significantly correlated (P⩽0.001) to the degree of prostate tumor differentiation (Gleason score) when compared to transcripts from unannotated genomic regions (1%, [6/539]) or from exons of known genes (2%, [27/1369]). Among the top twelve transcripts most correlated to tumor differentiation, six are antisense intronic messages as shown by orientation-specific RT-PCR or Northern blot analysis with strand-specific riboprobe. Orientation-specific real-time RT–PCR with six tumor samples, confirmed the correlation (P=0.024) between the low/high degrees of tumor differentiation and antisense intronic RASSF1 transcript levels. The need to use intron arrays to reveal the transcriptome profile of antisense intronic RNA in cancer has clearly emerged.


Journal of Immunology | 2011

Phenotype, Function, and Gene Expression Profiles of Programmed Death-1hi CD8 T Cells in Healthy Human Adults

Jaikumar Duraiswamy; Chris Ibegbu; David Masopust; Joseph D. Miller; Koichi Araki; Gregory H. Doho; Pramila Tata; Satish Gupta; Michael J. Zilliox; Helder I. Nakaya; Bali Pulendran; W. Nicholas Haining; Gordon J. Freeman; Rafi Ahmed

T cell dysfunction is an important feature of many chronic viral infections. In particular, it was shown that programmed death-1 (PD-1) regulates T cell dysfunction during chronic lymphocytic choriomeningitis virus infection in mice, and PD-1hi cells exhibit an intense exhausted gene signature. These findings were extended to human chronic infections such as HIV, hepatitis C virus, and hepatitis B virus. However, it is not known if PD-1hi cells of healthy humans have the traits of exhausted cells. In this study, we provide a comprehensive description of phenotype, function, and gene expression profiles of PD-1hi versus PD-1lo CD8 T cells in the peripheral blood of healthy human adults as follows: 1) the percentage of naive and memory CD8 T cells varied widely in the peripheral blood cells of healthy humans, and PD-1 was expressed by the memory CD8 T cells; 2) PD-1hi CD8 T cells in healthy humans did not significantly correlate with the PD-1hi exhausted gene signature of HIV-specific human CD8 T cells or chronic lymphocytic choriomeningitis virus-specific CD8 T cells from mice; 3) PD-1 expression did not directly affect the ability of CD8 T cells to secrete cytokines in healthy adults; 4) PD-1 was expressed by the effector memory compared with terminally differentiated effector CD8 T cells; and 5) finally, an interesting inverse relationship between CD45RA and PD-1 expression was observed. In conclusion, our study shows that most PD-1hi CD8 T cells in healthy adult humans are effector memory cells rather than exhausted cells.


Science | 2014

Vaccine Activation of the Nutrient Sensor GCN2 in Dendritic Cells Enhances Antigen Presentation

Rajesh Ravindran; Nooruddin Khan; Helder I. Nakaya; Shuzhao Li; Jens Loebbermann; Mohan S. Maddur; Youngja Park; Dean P. Jones; Pascal Chappert; Jean Davoust; David S. Weiss; Herbert W. Virgin; David Ron; Bali Pulendran

The Secret Life of a Vaccine Antigen-specific CD8÷ T cells play a central role in the adaptive immune response to viral infections and to cancer. Ravindran et al. (p. 313, published online 5 December) studied the successful yellow fever virus vaccine YF-17D to gain insight into its mechanism of action. The vaccine activated the nutrient deprivation sensor, GCN2 kinase, in dendritic cells. In transgenic mouse models, GCN2 activation promoted autophagy and antigen cross-presentation, enhancing the virus-specific CD8÷ T cell response. The findings suggest an important role for nutrient availability and autophagy in vaccine efficacy, which could aid more successful vaccine development. The success of the yellow fever vaccine is linked to the amino acid starvation pathway, which promotes adaptive immunity. The yellow fever vaccine YF-17D is one of the most successful vaccines ever developed in humans. Despite its efficacy and widespread use in more than 600 million people, the mechanisms by which it stimulates protective immunity remain poorly understood. Recent studies using systems biology approaches in humans have revealed that YF-17D–induced early expression of general control nonderepressible 2 kinase (GCN2) in the blood strongly correlates with the magnitude of the later CD8+ T cell response. We demonstrate a key role for virus-induced GCN2 activation in programming dendritic cells to initiate autophagy and enhanced antigen presentation to both CD4+ and CD8+ T cells. These results reveal an unappreciated link between virus-induced integrated stress response in dendritic cells and the adaptive immune response.


Blood | 2012

Distinct TLR adjuvants differentially stimulate systemic and local innate immune responses in nonhuman primates

Marcin Kwissa; Helder I. Nakaya; Herold Oluoch; Bali Pulendran

TLR ligands (TLR-Ls) represent novel vaccine adjuvants, but their immunologic effects in humans remain poorly defined in vivo. In the present study, we analyzed the innate responses stimulated by different TLR-Ls in rhesus macaques. MPL (TLR4-L), R-848 (TLR7/8-L), or cytosine-phosphate-guanine oligodeoxynucleotide (TLR9-L) induced a rapid and robust expansion of blood neutrophils, with a concomitant reduction in PBMCs. Furthermore, all TLR-Ls induced rapid (3-8 hours) expansion of CD14(+) monocytes, but only TLR7/8-L and TLR9-L mobilized the CD14(+)CD16(+) and CD14(dim)CD16(++) monocytes, and only TLR7/8-L and TLR9-L induced activation of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs), production of IP-10 and type-I IFN, and expression of type-I IFN-related and chemokine genes in the blood. In the draining lymph nodes (LNs), consistent with the effects in blood, all TLR-Ls induced expansion of CD14(+) monocytes, but only TLR7/8-L and TLR9-L expanded the activated CD14(+)CD16(+) cells. TLR4-L and TLR9-L differentially induced the expansion of mDCs and pDCs (1-3 days), but did not activate DCs. In contrast, TLR7/8-L did not induce DC expansion, but did activate mDCs. Finally, both TLR9-L and TLR7/8-L induced the expression of genes related to chemokines and type-I IFNs in LNs. Thus different TLR-Ls mediate distinct signatures of early innate responses both locally and systemically.


PLOS Genetics | 2013

The Intronic Long Noncoding RNA ANRASSF1 Recruits PRC2 to the RASSF1A Promoter, Reducing the Expression of RASSF1A and Increasing Cell Proliferation

Felipe C. Beckedorff; Ana C. Ayupe; Renan Crocci-Souza; Murilo S. Amaral; Helder I. Nakaya; Daniela T. Soltys; Carlos Frederico Martins Menck; Eduardo M. Reis; Sergio Verjovski-Almeida

The down-regulation of the tumor-suppressor gene RASSF1A has been shown to increase cell proliferation in several tumors. RASSF1A expression is regulated through epigenetic events involving the polycomb repressive complex 2 (PRC2); however, the molecular mechanisms modulating the recruitment of this epigenetic modifier to the RASSF1 locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand on the RASSF1 gene locus in several cell lines and tissues and binds PRC2. ANRASSF1 is transcribed through RNA polymerase II and is 5′-capped and polyadenylated; it exhibits nuclear localization and has a shorter half-life compared with other lncRNAs that bind PRC2. ANRASSF1 endogenous expression is higher in breast and prostate tumor cell lines compared with non-tumor, and an opposite pattern is observed for RASSF1A. ANRASSF1 ectopic overexpression reduces RASSF1A abundance and increases the proliferation of HeLa cells, whereas ANRASSF1 silencing causes the opposite effects. These changes in ANRASSF1 levels do not affect the RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase in both PRC2 occupancy and histone H3K27me3 repressive marks, specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression was detected on PRC2 occupancy and histone H3K27me3 at the promoter regions of RASSF1C and the four other neighboring genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrated that ANRASSF1 forms an RNA/DNA hybrid and recruits PRC2 to the RASSF1A promoter. Together, these results demonstrate a novel mechanism of epigenetic repression of the RASSF1A tumor suppressor gene involving antisense unspliced lncRNA, in which ANRASSF1 selectively represses the expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome might contribute to a location-specific epigenetic modulation of genes.


Cell Host & Microbe | 2014

Dengue Virus Infection Induces Expansion of a CD14+CD16+ Monocyte Population that Stimulates Plasmablast Differentiation

Marcin Kwissa; Helder I. Nakaya; Nattawat Onlamoon; Jens Wrammert; Francois Villinger; Guey Chuen Perng; Sutee Yoksan; Kovit Pattanapanyasat; Kulkanya Chokephaibulkit; Rafi Ahmed; Bali Pulendran

Dengue virus (DENV) infection induces the expansion of plasmablasts, which produce antibodies that can neutralize DENV but also enhance disease upon secondary infection with another DENV serotype. To understand how these immune responses are generated, we used a systems biological approach to analyze immune responses to dengue in humans. Transcriptomic analysis of whole blood revealed that genes encoding proinflammatory mediators and type I interferon-related proteins were associated with high DENV levels during initial symptomatic disease. Additionally, CD14(+)CD16(+) monocytes increased in the blood. Similarly, in a nonhuman primate model, DENV infection boosted CD14(+)CD16(+) monocyte numbers in the blood and lymph nodes. Upon DENV infection in vitro, monocytes upregulated CD16 and mediated differentiation of resting B cells to plasmablasts as well as immunoglobulin G (IgG) and IgM secretion. These findings provide a detailed picture of innate responses to dengue and highlight a role for CD14(+)CD16(+) monocytes in promoting plasmablast differentiation and anti-DENV antibody responses.

Collaboration


Dive into the Helder I. Nakaya's collaboration.

Top Co-Authors

Avatar

Bali Pulendran

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rodrigo Louro

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Andreas Suhrbier

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge