Helen C. Glanville
Bangor University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen C. Glanville.
Applied and Environmental Microbiology | 2011
Johannes Rousk; P.C. Brookes; Helen C. Glanville; Davey L. Jones
ABSTRACT We studied how soil pH (pHs 4 to 8) influenced the mineralization of low-molecular-weight (LMW)-dissolved organic carbon (DOC) compounds, and how this compared with differences in microbial community structure. The mineralization of LMW-DOC compounds was not systematically connected to differences in soil pH, consistent with soil respiration. In contrast, the microbial community compositions differed dramatically. This suggests that microbial community composition data will be of limited use in improving the predictive power of soil C models.
Science of The Total Environment | 2016
Bridget A. Emmett; David Cooper; Simon M. Smart; Bethanna Jackson; Amy Thomas; B. J. Cosby; Chris D. Evans; Helen C. Glanville; James E. McDonald; Shelagh K. Malham; Miles R. Marshall; Susan G. Jarvis; Paulina Rajko-Nenow; Gearoid Webb; Susan E. Ward; Ed Rowe; Laurence Jones; Adam J. Vanbergen; Aidan M. Keith; Heather Carter; M. Glória Pereira; Steve Hughes; Inma Lebron; Andrew J. Wade; Davey L. Jones
Improved understanding and prediction of the fundamental environmental controls on ecosystem service supply across the landscape will help to inform decisions made by policy makers and land-water managers. To evaluate this issue for a local catchment case study, we explored metrics and spatial patterns of service supply for water quality regulation, agriculture production, carbon storage, and biodiversity for the Macronutrient Conwy catchment. Methods included using ecosystem models such as LUCI and JULES, integration of national scale field survey datasets, earth observation products and plant trait databases, to produce finely resolved maps of species richness and primary production. Analyses were done with both 1×1km gridded and subcatchment data. A common single gradient characterised catchment scale ecosystem services supply with agricultural production and carbon storage at opposing ends of the gradient as reported for a national-scale assessment. Species diversity was positively related to production due to the below national average productivity levels in the Conwy combined with the unimodal relationship between biodiversity and productivity at the national scale. In contrast to the national scale assessment, a strong reduction in water quality as production increased was observed in these low productive systems. Various soil variables were tested for their predictive power of ecosystem service supply. Soil carbon, nitrogen, their ratio and soil pH all had double the power of rainfall and altitude, each explaining around 45% of variation but soil pH is proposed as a potential metric for ecosystem service supply potential as it is a simple and practical metric which can be carried out in the field with crowd-sourcing technologies now available. The study emphasises the importance of considering multiple ecosystem services together due to the complexity of covariation at local and national scales, and the benefits of exploiting a wide range of metrics for each service to enhance data robustness.
Functional Ecology | 2017
Simon M. Smart; Helen C. Glanville; Maria del Carmen Blanes; Lina M. Mercado; Bridget A. Emmett; David Leonard Jones; B. J. Cosby; R.H. Marrs; Adam Butler; Miles R. Marshall; Sabine Reinsch; Cristina Herrero-Jáuregui; J. G. Hodgson
1. Reliable modelling of above-ground Net Primary Production (aNPP) at fine resolution is a significant challenge. A promising avenue for improving process models is to include response and effect trait relationships. However, uncertainties remain over which leaf traits are correlated most strongly with aNPP. 2. We compared abundance-weighted values of two of the most widely used traits from the Leaf Economics Spectrum (Specific Leaf Area and Leaf Dry Matter Content) with measured aNPP across a temperate ecosystem gradient. 3. We found that Leaf Dry Matter Content (LDMC) as opposed to Specific Leaf Area (SLA) was the superior predictor of aNPP (R2=0.55). 4. Directly measured in situ trait values for the dominant species improved estimation of aNPP significantly. Introducing intra-specific trait variation by including the effect of replicated trait values from published databases did not improve the estimation of aNPP. 5. Our results support the prospect of greater scientific understanding for less cost because LDMC is much easier to measure than SLA.
Ecohydrology | 2018
Laura L. de Sosa; Helen C. Glanville; Miles R. Marshall; Sinan A. Abood; A. Prysor Williams; Davey L. Jones
Riparian buffers, the interface between terrestrial and freshwater ecosystems, have the potential to protect water bodies from land-based pollution, and also for enhancing the delivery of a range of ecosystem services. The UK currently has no defined optimal width or maximum extent of riparian buffers for specific ecosystem services. Here, we present the first study, which attempts to (a) compare and critique different riparian buffer delineation methods and (b) investigate how ecological processes, for example, pollutant removal, nutrient cycling, and water temperature regulation, are affected spatially by proximity to the river and also within a riparian buffer zone. Our results have led to the development of new concepts for riparian delineation based on ecosystem service-specific scenarios. Results from our study suggest that choice of delineation method will influence not only the total area of potential riparian buffers but also the proportion of land cover types included, which in turn will determine their main ecosystem provision. Thus, for some ecological processes (e.g., pollutant removal), a fixed-distance approach will preserve and protect its ecosystem function, whereas for processes such as denitrification, a variable-width buffer will reflect better riparian spatial variability maximizing its ecological value. In summary, riparian delineation within UK habitats should be specific to the particular ecosystem service(s) of interest (e.g., uptake of nutrients and shading), and the effectiveness of the buffer should be ground-truthed to ensure the greatest level of protection.
Science of The Total Environment | 2018
Laura L. de Sosa; Helen C. Glanville; Miles R. Marshall; A. Prysor Williams; Davey L. Jones
Riparian areas, the interface between land and freshwater ecosystems, are considered to play a pivotal role in the supply of regulating, provisioning, cultural and supporting services. Most previous studies, however, have tended to focus on intensive agricultural systems and only on a single ecosystem function. Here, we present the first study which attempts to assess a wide range of ecological processes involved in the provision of the ecosystem service of water quality regulation across a diverse range of riparian typologies. Specifically, we focus on 1) evaluating the spatial variation in riparian soils properties with respect to distance with the river and soil depth in contrasting habitat types; 2) gaining further insights into the underlying mechanisms of pollutant removal (i.e. pesticide sorption/degradation, denitrification, etc.) by riparian soils; and 3) quantify and evaluate how riparian vegetation across different habitat types contribute to the provision of watercourse shading. All the habitats were present within a single large catchment and included: (i) improved grassland, (ii) unimproved (semi-natural) grassland, (iii) broadleaf woodland, (iv) coniferous woodland, and (iv) mountain, heath and bog. Taking all the data together, the riparian soils could be statistically separated by habitat type, providing evidence that they deliver ecosystem services to differing extents. Overall, however, our findings seem to contradict the general assumption that soils in riparian area are different from neighbouring (non-riparian) areas and that they possess extra functionality in terms of ecosystem service provision. Watercourse shading was highly habitat specific and was maximal in forests (ca. 52% shade cover) in comparison to the other habitat types (7-17%). Our data suggest that the functioning of riparian areas in less intensive agricultural areas, such as those studied here, may be broadly predicted from the surrounding land use, however, further research is required to critically test this across a wider range of ecosystems.
Science of The Total Environment | 2017
F.L. Brailsford; Helen C. Glanville; Miles R. Marshall; Peter N. Golyshin; Penny J Johnes; Christopher A Yates; Alun T Owen; Davey L. Jones
Dissolved organic matter (DOM) plays a central role in regulating productivity and nutrient cycling in freshwaters. It is therefore vital that we can representatively sample and preserve DOM in freshwaters for subsequent analysis. Here we investigated the effect of filtration, temperature (5 and 25°C) and acidification (HCl) on the persistence of low molecular weight (MW) dissolved organic carbon (DOC), nitrogen (DON) and orthophosphate in oligotrophic and eutrophic freshwater environments. Our results showed the rapid loss of isotopically-labelled glucose and amino acids from both filtered (0.22 and 0.45μm) and unfiltered waters. We ascribe this substrate depletion in filtered samples to the activity of ultra-small (<0.45μm) microorganisms (bacteria and archaea) present in the water. As expected, the rate of C, N and P loss was much greater at higher temperatures and was repressed by the addition of HCl. Based on our results and an evaluation of the protocols used in recently published studies, we conclude that current techniques used to sample water for low MW DOM characterisation are frequently inadequate and lack proper validation. In contrast to the high degree of analytical precision and rigorous statistical analysis of most studies, we argue that insufficient consideration is still given to the presence of ultra-small microorganisms and potential changes that can occur in the low MW fraction of DOM prior to analysis.
Soil Biology & Biochemistry | 2013
Richard S. Quilliam; Helen C. Glanville; Stephen C. Wade; Davey L. Jones
Soil Biology & Biochemistry | 2012
Helen C. Glanville; Johannes Rousk; Peter N. Golyshin; Davey L. Jones
Soil Biology & Biochemistry | 2016
Helen C. Glanville; Paul W. Hill; Andrea Schnepf; Eva Oburger; Davey L. Jones
Soil Biology & Biochemistry | 2015
Thomas H. DeLuca; Helen C. Glanville; Matthew Harris; Bridget A. Emmett; Melissa R.A. Pingree; Laura L. de Sosa; Cristina Cerdá-Moreno; Davey L. Jones