Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Ferry is active.

Publication


Featured researches published by Helen Ferry.


The New England Journal of Medicine | 2010

Persistent malignant stem cells in del(5q) myelodysplasia in remission.

Ramin Tehranchi; Petter S. Woll; Kristina Anderson; Natalija Buza-Vidas; Takuo Mizukami; Adam Mead; Ingbritt Åstrand-Grundström; Bodil Strömbeck; Andrea Horvat; Helen Ferry; Rakesh Singh Dhanda; Robert Hast; Tobias Rydén; Paresh Vyas; Gudrun Göhring; Brigitte Schlegelberger; Bertil Johansson; Eva Hellström-Lindberg; Alan F. List; Lars J Nilsson; Sten Eirik W. Jacobsen

BACKGROUND The in vivo clinical significance of malignant stem cells remains unclear. METHODS Patients who have the 5q deletion (del[5q]) myelodysplastic syndrome (interstitial deletions involving the long arm of chromosome 5) have complete clinical and cytogenetic remissions in response to lenalidomide treatment, but they often have relapse. To determine whether the persistence of rare but distinct malignant stem cells accounts for such relapses, we examined bone marrow specimens obtained from seven patients with the del(5q) myelodysplastic syndrome who became transfusion-independent while receiving lenalidomide treatment and entered cytogenetic remission. RESULTS Virtually all CD34+, CD38+ progenitor cells and stem cells that were positive for CD34 and CD90, with undetectable or low CD38 (CD38−/low), had the 5q deletion before treatment. Although lenalidomide efficiently reduced these progenitors in patients in complete remission, a larger fraction of the minor, quiescent, CD34+,CD38-/low, CD90+ del(5q) stem cells as well as functionally defined del(5q) stem cells remained distinctly resistant to lenalidomide. Over time, lenalidomide resistance developed in most of the patients in partial and complete remission, with recurrence or expansion of the del(5q) clone and clinical and cytogenetic progression. CONCLUSIONS In these patients with the del(5q) myelodysplastic syndrome, we identified rare and phenotypically distinct del(5q) myelodysplastic syndrome stem cells that were also selectively resistant to therapeutic targeting at the time of complete clinical and cytogenetic remission. (Funded by the EuroCancerStemCell Consortium and others.)


Nature Immunology | 2012

The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

Sidinh Luc; Tiago C. Luis; Hanane Boukarabila; Iain C Macaulay; Natalija Buza-Vidas; Tiphaine Bouriez-Jones; Michael Lutteropp; Petter S. Woll; Stephen Loughran; Adam Mead; Anne Hultquist; John Brown; Takuo Mizukami; S Matsuoka; Helen Ferry; Kristina Anderson; Deborah Atkinson; Shamit Soneji; Aniela Domanski; Alison Farley; Alejandra Sanjuan-Pla; Cintia Carella; Roger Patient; Marella de Bruijn; Tariq Enver; Claus Nerlov; C. Clare Blackburn; Isabelle Godin; Sten Eirik W. Jacobsen

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte–restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage–commitment process transits from the bone marrow to the remote thymus.


Cell Stem Cell | 2009

Cited2 Is an Essential Regulator of Adult Hematopoietic Stem Cells

Kamil R. Kranc; Hein Schepers; Neil P. Rodrigues; Simon D. Bamforth; Ellen Villadsen; Helen Ferry; Tiphaine Bouriez-Jones; Mikael Sigvardsson; Shoumo Bhattacharya; Sten Eirik W. Jacobsen; Tariq Enver

Summary The regulatory pathways necessary for the maintenance of adult hematopoietic stem cells (HSCs) remain poorly defined. By using loss-of-function approaches, we report a selective and cell-autonomous requirement for the p300/CBP-binding transcriptional coactivator Cited2 in adult HSC maintenance. Conditional deletion of Cited2 in the adult mouse results in loss of HSCs causing multilineage bone marrow failure and increased lethality. In contrast, conditional ablation of Cited2 after lineage specification in lymphoid and myeloid lineages has no impact on the maintenance of these lineages. Additional deletion of Ink4a/Arf (encoding p16Ink4a and p19Arf) or Trp53 (encoding p53, a downstream target of p19Arf) in a Cited2-deficient background restores HSC functionality and rescues mice from bone marrow failure. Furthermore, we show that the critical role of Cited2 in primitive hematopoietic cells is conserved in humans. Taken together, our studies provide genetic evidence that Cited2 selectively maintains adult HSC functions, at least in part, via Ink4a/Arf and Trp53.


Journal of Experimental Medicine | 2003

The Cellular Location of Self-antigen Determines the Positive and Negative Selection of Autoreactive B Cells

Helen Ferry; Margaret Jones; David J. Vaux; Ian S. Roberts; Richard J. Cornall

Systemic autoimmune disease is frequently characterized by the production of autoantibodies against widely expressed intracellular self-antigens, whereas B cell tolerance to ubiquitous and highly expressed extracellular antigens is strictly enforced. To test for differences in the B cell response to intracellular and extracellular self-antigens, we sequestered a tolerogenic cell surface antigen intracellularly by addition of a two amino acid endoplasmic reticulum (ER) retention signal. In contrast to cell surface antigen, which causes the deletion of autoreactive B cells, the intracellularly sequestered self-antigen failed to induce B cell tolerance and was instead autoimmunogenic. The intracellular antigen positively selected antigen-binding B cells to differentiate into B1 cells and induced large numbers of IgM autoantibody-secreting plasma cells in a T-independent manner. By analyzing the impact of differences in subcellular distribution independently from other variables, such as B cell receptor affinity, antigen type, or tissue distribution, we have established that intracellular localization of autoantigen predisposes for autoantibody production. These findings help explain why intracellular antigens are targeted in systemic autoimmune diseases.


Journal of Immunology | 2006

CD4 T cell-dependent autoimmunity against a melanocyte neoantigen induces spontaneous vitiligo and depends upon Fas-Fas ligand interactions.

Teresa Lambe; Janson C. H. Leung; Tiphaine Bouriez-Jones; Karlee Silver; Kimmo Makinen; Tanya L. Crockford; Helen Ferry; John V. Forrester; Richard J. Cornall

Better understanding of tolerance and autoimmunity toward melanocyte-specific Ags is needed to develop effective treatment for vitiligo and malignant melanoma; yet, a systematic assessment of these mechanisms has been hampered by the difficulty in tracking autoreactive T cells. To address this issue, we have generated transgenic mice that express hen egg lysozyme as a melanocyte-specific neoantigen. By crossing these animals to a hen egg lysozyme-specific CD4 TCR transgenic line we have been able to track autoreactive CD4+ T cells from their development in the thymus to their involvement in spontaneous autoimmune disease with striking similarity to human vitiligo vulgaris and Vogt-Koyanagi-Harada syndrome. Our findings show that CD4-dependent destruction of melanocytes is partially inhibited by blocking Fas-Fas ligand interactions and also highlights the importance of local control of autoimmunity, as vitiligo remains patchy and never proceeds to confluence even when Ag and autoreactive CD4+ T cells are abundant. Immune therapy to enhance or suppress melanocyte-specific T cells can be directed at a series of semiredundant pathways involving tolerance and cell death.


Journal of Immunology | 2007

Limited Peripheral T Cell Anergy Predisposes to Retinal Autoimmunity

Teresa Lambe; Janson C. H. Leung; Helen Ferry; Tiphaine Bouriez-Jones; Kimmo Makinen; Tanya L. Crockford; Hui R. Jiang; John M. Nickerson; Leena Peltonen; John V. Forrester; Richard J. Cornall

Autoimmune uveoretinitis accounts for at least 10% of worldwide blindness, yet it is unclear why tolerance to retinal Ags is so fragile and, particularly, to what extent this might be due to defects in peripheral tolerance. To address this issue, we generated double-transgenic mice expressing hen egg lysozyme, under the retinal interphotoreceptor retinoid-binding promoter, and a hen egg lysozyme-specific CD4+ TCR transgene. In this manner, we have tracked autoreactive CD4+ T cells from their development in the thymus to their involvement in uveoretinitis and compared tolerogenic mechanisms induced in a variety of organs to the same self-Ag. Our findings show that central tolerance to retinal and pancreatic Ags is qualitatively similar and equally dependent on the transcriptional regulator protein AIRE. However, the lack of Ag presentation in the eye-draining lymph nodes results in a failure to induce high levels of T cell anergy. Under these circumstances, despite considerable central deletion, low levels of retinal-specific autoreactive CD4+ T cells can induce severe autoimmune disease. The relative lack of anergy induction by retinal Ags, in contrast to the same Ag in other organs, helps to explain the unique susceptibility of the eye to spontaneous and experimentally induced autoimmune disease.


Blood | 2011

FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells

Natalija Buza-Vidas; Petter S. Woll; Anne Hultquist; Michael Lutteropp; Tiphaine Bouriez-Jones; Helen Ferry; Sidinh Luc; Sten Eirik W. Jacobsen

Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3(-) Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied.


Immunogenetics | 2004

Hyper IgE in New Zealand black mice due to a dominant-negative CD23 mutation

Graham Lewis; Eleni Rapsomaniki; Tiphaine Bouriez; Tanya L. Crockford; Helen Ferry; Robert J. Rigby; Timothy J. Vyse; Teresa Lambe; Richard J. Cornall

Immunoglobulin E (IgE) plays a critical role in both resistance to parasitic infection and allergy to environmental antigens. The IgE response is in turn regulated by the B-cell co-receptor CD23, and CD23-deficient mice show exaggerated IgE responses and airway hyper-responsiveness. In this report, we show that New Zealand black (NZB) mice express a variant CD23 allele, with mutations in both the C-lectin-binding domain and stalk region, which fails to bind IgE at high affinity and has reduced expression on the cell surface. Expression of the variant CD23 chain interferes with trimerisation of the receptor and has a dominant-negative effect leading to reduced IgE binding in crosses between NZB and other strains. Genetic mapping shows that the variant CD23 leads to an exaggerated primary IgE response, which is independent of other strain-specific effects. These results suggest that NZB mice or mice carrying the variant allele will be useful models for studying both allergy and quantitative traits associated with atopy. The exaggerated IgE response provides an explanation for the natural resistance of NZB mice to parasitic infection by Leishmania.


Cell Reports | 2013

FLT3-ITDs Instruct a Myeloid Differentiation and Transformation Bias in Lymphomyeloid Multipotent Progenitors.

Adam Mead; Shabnam Kharazi; Deborah Atkinson; Iain C Macaulay; Christian Pecquet; Stephen Loughran; Michael Lutteropp; Petter S. Woll; Onima Chowdhury; Sidinh Luc; Natalija Buza-Vidas; Helen Ferry; Sally-Ann Clark; Nicolas Goardon; Paresh Vyas; Stefan N. Constantinescu; Ewa Sitnicka; Claus Nerlov; Sten Eirik W. Jacobsen

Summary Whether signals mediated via growth factor receptors (GFRs) might influence lineage fate in multipotent progenitors (MPPs) is unclear. We explored this issue in a mouse knockin model of gain-of-function Flt3-ITD mutation because FLT3-ITDs are paradoxically restricted to acute myeloid leukemia even though Flt3 primarily promotes lymphoid development during normal hematopoiesis. When expressed in MPPs, Flt3-ITD collaborated with Runx1 mutation to induce high-penetrance aggressive leukemias that were exclusively of the myeloid phenotype. Flt3-ITDs preferentially expanded MPPs with reduced lymphoid and increased myeloid transcriptional priming while compromising early B and T lymphopoiesis. Flt3-ITD-induced myeloid lineage bias involved upregulation of the transcription factor Pu.1, which is a direct target gene of Stat3, an aberrantly activated target of Flt3-ITDs, further establishing how lineage bias can be inflicted on MPPs through aberrant GFR signaling. Collectively, these findings provide new insights into how oncogenic mutations might subvert the normal process of lineage commitment and dictate the phenotype of resulting malignancies.


Blood | 2011

Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation

Shabnam Kharazi; Adam Mead; Anna Mansour; Anne Hultquist; Charlotta Böiers; Sidinh Luc; Natalija Buza-Vidas; Zhi Ma; Helen Ferry; Debbie Atkinson; Kristian Reckzeh; Kristina Masson; Jörg Cammenga; Lars Rönnstrand; Fumio Arai; Toshio Suda; Claus Nerlov; Ewa Sitnicka; Sten Eirik W. Jacobsen

Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent.

Collaboration


Dive into the Helen Ferry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claus Nerlov

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sten Eirik W. Jacobsen

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge