Rian L. Griffiths
University of Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rian L. Griffiths.
Analytical Chemistry | 2013
Judith M. Fonville; Claire L. Carter; Luis Pizarro; Rory T. Steven; Andrew Palmer; Rian L. Griffiths; Patricia F. Lalor; John C. Lindon; Jeremy K. Nicholson; Elaine Holmes; Josephine Bunch
The acquisition of localized molecular spectra with mass spectrometry imaging (MSI) has a great, but as yet not fully realized, potential for biomedical diagnostics and research. The methodology generates a series of mass spectra from discrete sample locations, which is often analyzed by visually interpreting specifically selected images of individual masses. We developed an intuitive color-coding scheme based on hyperspectral imaging methods to generate a single overview image of this complex data set. The image color-coding is based on spectral characteristics, such that pixels with similar molecular profiles are displayed with similar colors. This visualization strategy was applied to results of principal component analysis, self-organizing maps and t-distributed stochastic neighbor embedding. Our approach for MSI data analysis, combining automated data processing, modeling and display, is user-friendly and allows both the spatial and molecular information to be visualized intuitively and effectively.
Analytical Chemistry | 2015
Joscelyn Sarsby; Rian L. Griffiths; Alan M. Race; Josephine Bunch; Elizabeth C. Randall; Andrew J. Creese; Helen J. Cooper
Previously we have shown that liquid extraction surface analysis (LESA) mass spectrometry is suitable for the analysis of intact proteins from a range of biological substrates. Here we show that LESA mass spectrometry may be coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for top-down protein analysis directly from thin tissue sections (mouse liver, mouse brain) and from bacterial colonies (Escherichia coli) growing on agar. Incorporation of FAIMS results in significant improvements in signal-to-noise and reduced analysis time. Abundant protein signals are observed in single scan mass spectra. In addition, FAIMS enables gas-phase separation of molecular classes, for example, lipids and proteins, enabling improved analysis of both sets of species from a single LESA extraction.
Journal of the American Society for Mass Spectrometry | 2015
Nicholas Martin; Rian L. Griffiths; Rebecca L. Edwards; Helen J. Cooper
AbstractLiquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)24H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The ‘contact’ LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS. Graphical Abstractᅟ
Journal of Mass Spectrometry | 2012
Andrew Palmer; Rian L. Griffiths; Iain B. Styles; Ela Claridge; Antonio Calcagni; Josephine Bunch
Sucrose is used as a cryo-preservation agent on large mammalian eyes post formalin fixation and is shown to reduce freezing artefacts allowing the collection of 12-µm thick sections from these large aqueous samples. The suitability of this technique for use in MALDI imaging experiments is demonstrated by the acquisition of the first images of lipid distributions within whole sagittal porcine eye sections.
Rapid Communications in Mass Spectrometry | 2012
Rian L. Griffiths; Josephine Bunch
RATIONALE Matrix-assisted laser desorption/ionization (MALDI) is a powerful technique for the direct analysis of lipids in complex mixtures and thin tissue sections, making it an extremely attractive method for profiling lipids in health and disease. Lipids are readily detected as [M+H](+), [M+Na](+) and [M+K](+) ions in positive ion MALDI mass spectrometry (MS) experiments. This not only decreases sensitivity, but can also lead to overlapping m/z values of the various adducts of different lipids. Additives can be used to promote formation of a particular adduct, improving sensitivity, reducing spectral complexity and enhancing structural characterization in collision-induced dissociation (CID) experiments. METHODS Li(+), Na(+), K(+), Cs(+) and NH(4)(+) cations were considered as a range of salt types (acetates, chlorides and nitrates) incorporated into DHB matrix solutions at concentrations between 5 and 80 mM. The study was extended to evaluate the effect of these additives on CID experiments of a lipid standard, after optimization of collision energy parameters. Experiments were performed on a hybrid quadrupole time-of-flight (QqTOF) instrument. RESULTS The systematic evaluation of new and existing additives in MALDI-MS and MS/MS of lipids demonstrated the importance of additive cation and anion choice and concentration for tailoring spectral results. CONCLUSIONS The recommended choice of additive depends on the desired outcomes of the experiment to be performed (MS or MS/MS). Nitrates are found to be particularly useful additives for lipid analysis.
Analytical Chemistry | 2016
Rian L. Griffiths; Andrew J. Creese; Alan M. Race; Josephine Bunch; Helen J. Cooper
We have shown previously that coupling of high field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility, with liquid extraction surface analysis (LESA) mass spectrometry of tissue results in significant improvements in the resulting protein mass spectra. Here, we demonstrate LESA FAIMS mass spectrometry imaging of proteins in sections of mouse brain and liver tissue. The results are compared with LESA mass spectrometry images obtained in the absence of FAIMS. The results show that the number of different protein species detected can be significantly increased by incorporating FAIMS into the workflow. A total of 34 proteins were detected by LESA FAIMS mass spectrometry imaging of mouse brain, of which 26 were unique to FAIMS, compared with 15 proteins (7 unique) detected by LESA mass spectrometry imaging. A number of proteins were identified including α-globin, 6.8 kDa mitochondrial proteolipid, macrophage migration inhibitory factor, ubiquitin, β-thymosin 4, and calmodulin. A total of 40 species were detected by LESA FAIMS mass spectrometry imaging of mouse liver, of which 29 were unique to FAIMS, compared with 24 proteins (13 unique) detected by LESA mass spectrometry imaging. The spatial distributions of proteins identified in both LESA mass spectrometry imaging and LESA FAIMS mass spectrometry imaging were in good agreement indicating that FAIMS is a suitable tool for inclusion in mass spectrometry imaging workflows.
Analytical Chemistry | 2013
Rian L. Griffiths; Joscelyn Sarsby; Emily J. Guggenheim; Alan M. Race; Rory T. Steven; Janine Fear; Patricia F. Lalor; Josephine Bunch
Mass spectrometry imaging is a powerful method for imaging and in situ characterization of lipids in thin tissue sections. Structural elucidation of lipids is often achieved via collision induced dissociation, and lithium-lipid adducts have been widely reported as providing the most structurally informative fragment ions. We present a method for the incorporation of lithium salts into tissue imaging experiments via fixation of samples in formal lithium solutions. The method is suitable for preparation of single tissue sections, or as an immersion fixation method for whole tissue blocks or organs prior to sectioning. We compare lithium adduct detection and MALDI-MSI of murine brain from analysis of tissues prepared in different ways. Tissues prepared in formal solutions containing lithium or sodium salts before coating in matrix via air-spray deposition are compared with fresh samples coated in lithium-doped matrix preparations by either dry-coating or air-spray deposition. Sample preparation via fixation in formal lithium is shown to yield the highest quality images of lithium adducts, resulting in acquisition of more informative product ion spectra in MALDI MS/MS profiling and imaging experiments. Finally, the compatibility of formal lithium solutions with standard histological staining protocols (hemotoxylin and eosin, Van Giessen and Oil Red O) is demonstrated in a study of human liver tissue.
Analytical Chemistry | 2016
Rian L. Griffiths; Helen J. Cooper
Native mass spectrometry seeks to probe noncovalent protein interactions in terms of protein quaternary structure, protein-protein and protein-ligand complexes. The ultimate goal is to link the understanding of protein interactions to the protein environment by visualizing the spatial distribution of noncovalent protein interactions within tissue. Previously, we have shown that noncovalently bound protein complexes can be directly probed via liquid extraction surface analysis from dried blood spot samples, where hemoglobin is highly abundant. Here, we show that the intact hemoglobin complex can be sampled directly from thin tissue sections of mouse liver and correlated to a visible vascular feature, paving the way for native mass spectrometry imaging.
Analytical Chemistry | 2017
Rian L. Griffiths; Elizabeth C. Randall; Alan M. Race; Josephine Bunch; Helen J. Cooper
Mass spectrometry imaging by use of continuous-flow liquid microjunction sampling at discrete locations (array mode) has previously been demonstrated. In this Letter, we demonstrate continuous-flow liquid microjunction mass spectrometry imaging of proteins from thin tissue sections in raster mode and discuss advantages (a 10-fold reduction in analysis time) and challenges (suitable solvent systems, data interpretation) of the approach. Visualization of data is nontrivial, requiring correlation of solvent-flow, mass spectral data acquisition rate, data quality, and liquid microjunction sampling area. The latter is particularly important for determining optimum pixel size. The minimum achievable pixel size is related to the scan time of the instrument used. Here we show a minimum achievable pixel size of 50 μm (x-dimension) when using an Orbitrap Elite; however a pixel size of 600 μm is recommended in order to minimize the effects of oversampling on image accuracy.
Current Opinion in Chemical Biology | 2018
Rian L. Griffiths; Klaudia I. Kocurek; Helen J. Cooper
Ambient surface mass spectrometry encompasses a broad range of sampling and ionization techniques. To date, only a small subset of these, based on liquid microjunction extraction, have proven suitable for intact protein analysis from thin tissue sections. Liquid extraction surface analysis shows particular promise for this application. Recently, a range of ion mobility spectrometry approaches have been coupled with ambient mass spectrometry. Improvements in signal-to-noise ratios, decreased chemical noise and separation of molecular classes have been described for the analysis of various biological substrates. Similar benefits have been described for ambient mass spectrometry imaging studies. In this review, we discuss the application of ambient mass spectrometry and ion mobility spectrometry to the analysis of intact proteins, and discuss opportunities and challenges for the field.