Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen J. Kim is active.

Publication


Featured researches published by Helen J. Kim.


Nature | 2014

Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

Nicole A. Doria-Rose; Chaim A. Schramm; Jason Gorman; Penny L. Moore; Jinal N. Bhiman; Brandon J. DeKosky; Michael J. Ernandes; Ivelin S. Georgiev; Helen J. Kim; Marie Pancera; Ryan P. Staupe; Han R. Altae-Tran; Robert T. Bailer; Ema T. Crooks; Albert Cupo; Aliaksandr Druz; Nigel Garrett; Kam Hon Hoi; Rui Kong; Mark K. Louder; Nancy S. Longo; Krisha McKee; Molati Nonyane; Sijy O’Dell; Ryan S. Roark; Rebecca S. Rudicell; Stephen D. Schmidt; Daniel J. Sheward; Cinque Soto; Constantinos Kurt Wibmer

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01–12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.


PLOS Pathogens | 2013

A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies

Rogier W. Sanders; Ronald Derking; Albert Cupo; Jean-Philippe Julien; Anila Yasmeen; Natalia de Val; Helen J. Kim; Claudia Blattner; Alba Torrents de la Peña; Jacob Korzun; Michael Golabek; Kevin de los Reyes; Thomas J. Ketas; Marit J. van Gils; C. Richter King; Ian A. Wilson; Andrew B. Ward; Per Johan Klasse; John P. Moore

A desirable but as yet unachieved property of a human immunodeficiency virus type 1 (HIV-1) vaccine candidate is the ability to induce broadly neutralizing antibodies (bNAbs). One approach to the problem is to create trimeric mimics of the native envelope glycoprotein (Env) spike that expose as many bNAb epitopes as possible, while occluding those for non-neutralizing antibodies (non-NAbs). Here, we describe the design and properties of soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A transmitted/founder strain, BG505. These trimers are highly stable, more so even than the corresponding gp120 monomer, as judged by differential scanning calorimetry. They are also homogenous and closely resemble native virus spikes when visualized by negative stain electron microscopy (EM). We used several techniques, including ELISA and surface plasmon resonance (SPR), to determine the relationship between the ability of monoclonal antibodies (MAbs) to bind the soluble trimers and neutralize the corresponding virus. In general, the concordance was excellent, in that virtually all bNAbs against multiple neutralizing epitopes on HIV-1 Env were highly reactive with the BG505 SOSIP.664 gp140 trimers, including quaternary epitopes (CH01, PG9, PG16 and PGT145). Conversely, non-NAbs to the CD4-binding site, CD4-induced epitopes or gp41ECTO did not react with the trimers, even when their epitopes were present on simpler forms of Env (e.g. gp120 monomers or dissociated gp41 subunits). Three non-neutralizing MAbs to V3 epitopes did, however, react strongly with the trimers but only by ELISA, and not at all by SPR and to only a limited extent by EM. These new soluble trimers are useful for structural studies and are being assessed for their performance as immunogens.


Journal of Virology | 2015

A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene

Pavel Pugach; Gabriel Ozorowski; Albert Cupo; Rajesh P. Ringe; Anila Yasmeen; Natalia de Val; Ronald Derking; Helen J. Kim; Jacob Korzun; Michael Golabek; Kevin de los Reyes; Thomas J. Ketas; Jean-Philippe Julien; Dennis R. Burton; Ian A. Wilson; Rogier W. Sanders; Per Johan Klasse; Andrew B. Ward; John P. Moore

ABSTRACT Recombinant trimeric mimics of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike should expose as many epitopes as possible for broadly neutralizing antibodies (bNAbs) but few, if any, for nonneutralizing antibodies (non-NAbs). Soluble, cleaved SOSIP.664 gp140 trimers based on the subtype A strain BG505 approach this ideal and are therefore plausible vaccine candidates. Here, we report on the production and in vitro properties of a new SOSIP.664 trimer derived from a subtype B env gene, B41, including how to make this protein in low-serum media without proteolytic damage (clipping) to the V3 region. We also show that nonclipped trimers can be purified successfully via a positive-selection affinity column using the bNAb PGT145, which recognizes a quaternary structure-dependent epitope at the trimer apex. Negative-stain electron microscopy imaging shows that the purified, nonclipped, native-like B41 SOSIP.664 trimers contain two subpopulations, which we propose represent an equilibrium between the fully closed and a more open conformation. The latter is different from the fully open, CD4 receptor-bound conformation and may represent an intermediate state of the trimer. This new subtype B trimer adds to the repertoire of native-like Env proteins that are suitable for immunogenicity and structural studies. IMPORTANCE The cleaved, trimeric envelope protein complex is the only neutralizing antibody target on the HIV-1 surface. Many vaccine strategies are based on inducing neutralizing antibodies. For HIV-1, one approach involves using recombinant, soluble protein mimics of the native trimer. At present, the only reliable way to make native-like, soluble trimers in practical amounts is via the introduction of specific sequence changes that confer stability on the cleaved form of Env. The resulting proteins are known as SOSIP.664 gp140 trimers, and the current paradigm is based on the BG505 subtype A env gene. Here, we describe the production and characterization of a SOSIP.664 protein derived from a subtype B gene (B41), together with a simple, one-step method to purify native-like trimers by affinity chromatography with a trimer-specific bNAb, PGT145. The resulting trimers will be useful for structural and immunogenicity experiments aimed at devising ways to make an effective HIV-1 vaccine.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Cleavage strongly influences whether soluble HIV-1 envelope glycoprotein trimers adopt a native-like conformation

Rajesh P. Ringe; Rogier W. Sanders; Anila Yasmeen; Helen J. Kim; Jeong Hyun Lee; Albert Cupo; Jacob Korzun; Ronald Derking; Thijs van Montfort; Jean-Philippe Julien; Ian A. Wilson; Per Johan Klasse; Andrew B. Ward; John P. Moore

Significance Trimeric forms of HIV-1 envelope glycoproteins are being used for structural and vaccine studies. The most common way to make these proteins is to eliminate the cleavage site between the glycoprotein (gp)120 and gp41 subunits. We show that doing so creates trimers that adopt irregular, nonnative configurations. Cleaved, stabilized trimers, in contrast, resemble the native spikes on the HIV-1 virus. Our findings will help structural and vaccine programs by showing how to make native-like trimers. The rationale for vaccine trials based on the use of uncleaved gp140 trimers should be reevaluated. We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120–gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120–gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated.


Cell | 2014

Structural Evolution of Glycan Recognition by a Family of Potent HIV Antibodies

Fernando Garces; Devin Sok; Leopold Kong; Ryan McBride; Helen J. Kim; Karen F. Saye-Francisco; Jean-Philippe Julien; Yuanzi Hua; Albert Cupo; John P. Moore; James C. Paulson; Andrew B. Ward; Dennis R. Burton; Ian A. Wilson

The HIV envelope glycoprotein (Env) is densely covered with self-glycans that should help shield it from recognition by the human immune system. Here, we examine how a particularly potent family of broadly neutralizing antibodies (Abs) has evolved common and distinct structural features to counter the glycan shield and interact with both glycan and protein components of HIV Env. The inferred germline antibody already harbors potential binding pockets for a glycan and a short protein segment. Affinity maturation then leads to divergent evolutionary branches that either focus on a single glycan and protein segment (e.g., Ab PGT124) or engage multiple glycans (e.g., Abs PGT121-123). Furthermore, other surrounding glycans are avoided by selecting an appropriate initial antibody shape that prevents steric hindrance. Such molecular recognition lessons are important for engineering proteins that can recognize or accommodate glycans.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Activity-enhancing mutations in an E3 ubiquitin ligase identified by high-throughput mutagenesis

Lea M. Starita; Jonathan N. Pruneda; Russell S. Lo; Douglas M. Fowler; Helen J. Kim; Joseph Hiatt; Jay Shendure; Peter S. Brzovic; Stanley Fields; Rachel E. Klevit

Significance Ubiquitin is a 76 residue protein that is attached to target proteins as a posttranslational modification. This modification is dependent on the successive activity of three enzymes, designated E1, E2, and E3. We developed a high-throughput mutagenesis strategy to probe the mechanism of E3-catalyzed transfer of ubiquitin from the E2 to the target protein. By scoring the effect of nearly 100,000 mutations in an E3, we identified mutations that affect direct and allosteric interactions between the E3 and the E2. These results highlight the general utility of high-throughput mutagenesis in delineating the molecular basis of enzyme activity. Although ubiquitination plays a critical role in virtually all cellular processes, mechanistic details of ubiquitin (Ub) transfer are still being defined. To identify the molecular determinants within E3 ligases that modulate activity, we scored each member of a library of nearly 100,000 protein variants of the murine ubiquitination factor E4B (Ube4b) U-box domain for auto-ubiquitination activity in the presence of the E2 UbcH5c. This assay identified mutations that enhance activity both in vitro and in cellular p53 degradation assays. The activity-enhancing mutations fall into two distinct mechanistic classes: One increases the U-box:E2-binding affinity, and the other allosterically stimulates the formation of catalytically active conformations of the E2∼Ub conjugate. The same mutations enhance E3 activity in the presence of another E2, Ube2w, implying a common allosteric mechanism, and therefore the general applicability of our observations to other E3s. A comparison of the E3 activity with the two different E2s identified an additional variant that exhibits E3:E2 specificity. Our results highlight the general utility of high-throughput mutagenesis in delineating the molecular basis of enzyme activity.


Science | 2014

A Structurally Distinct Human Mycoplasma Protein that Generically Blocks Antigen-Antibody Union

Rajesh K. Grover; Xueyong Zhu; Travis Nieusma; Teresa M. Jones; Isabel Boero; Amanda S. MacLeod; Adam Mark; Sherry Niessen; Helen J. Kim; Leopold Kong; Nacyra Assad-Garcia; Keehwan Kwon; Marta Chesi; Vaughn V. Smider; Daniel R. Salomon; Diane F. Jelinek; Robert A. Kyle; Richard B. Pyles; John I. Glass; Andrew B. Ward; Ian A. Wilson; Richard A. Lerner

Easy M Our immune systems can produce a vastly diverse repertoire of antibody molecules that each recognize and bind to a specific foreign antigen via a hypervariable region. However, there are a few bacterial antigens—such as Protein A, Protein G, and Protein L—that instead bind to the antibodys conserved regions and can bind to a large number of different antibodies. These high-affinity broad-spectrum antibody-binding properties have been widely exploited both in the laboratory and in industry for purifying, immobilizing, and detecting antibodies. Grover et al. (p. 656) have now identified Protein M found on the surface of human mycoplasma, which displays even broader antibody-binding specificity. The crystal structure of Protein M revealed how Protein-M binding blocks the antibodys antigen binding site. This mechanism may be exploited by mycoplasma to escape the humoral immune response. High-affinity binding of Protein M to a very broad range of human antibodies may find widespread immunochemical applications. We report the discovery of a broadly reactive antibody-binding protein (Protein M) from human mycoplasma. The crystal structure of the ectodomain of transmembrane Protein M differs from other known protein structures, as does its mechanism of antibody binding. Protein M binds with high affinity to all types of human and nonhuman immunoglobulin G, predominantly through attachment to the conserved portions of the variable region of the κ and λ light chains. Protein M blocks antibody-antigen union, likely because of its large C-terminal domain extending over the antibody-combining site, blocking entry to large antigens. Similar to the other immunoglobulin-binding proteins such as Protein A, Protein M as well as its orthologs in other Mycoplasma species could become invaluable reagents in the antibody field.


Journal of Virology | 2016

Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens

Torben Schiffner; Natalia de Val; Rebecca A. Russell; Steven W. de Taeye; Alba Torrents de la Peña; Gabriel Ozorowski; Helen J. Kim; Travis Nieusma; Florian Brod; Albert Cupo; Rogier W. Sanders; John P. Moore; Andrew B. Ward; Quentin J. Sattentau

ABSTRACT Major neutralizing antibody immune evasion strategies of the HIV-1 envelope glycoprotein (Env) trimer include conformational and structural instability. Stabilized soluble trimers such as BG505 SOSIP.664 mimic the structure of virion-associated Env but nevertheless sample different conformational states. Here we demonstrate that treating BG505 SOSIP.664 trimers with glutaraldehyde or a heterobifunctional cross-linker introduces additional stability with relatively modest effects on antigenicity. Thus, most broadly neutralizing antibody (bNAb) epitopes were preserved after cross-linking, whereas the binding of most weakly or nonneutralizing antibodies (non-NAb) was reduced. Cross-linking stabilized all Env conformers present within a mixed population, and individual conformers could be isolated by bNAb affinity chromatography. Both positive selection of cross-linked conformers using the quaternary epitope-specific bNAbs PGT145, PGT151, and 3BC315 and negative selection with non-NAbs against the V3 region enriched for trimer populations with improved antigenicity for bNAbs. Similar results were obtained using the clade B B41 SOSIP.664 trimer. The cross-linking method may, therefore, be useful for countering the natural conformational heterogeneity of some HIV-1 Env proteins and, by extrapolation, also vaccine immunogens from other pathogens. IMPORTANCE The development of a vaccine to induce protective antibodies against HIV-1 is of primary public health importance. Recent advances in immunogen design have provided soluble recombinant envelope glycoprotein trimers with near-native morphology and antigenicity. However, these trimers are conformationally flexible, potentially reducing B-cell recognition of neutralizing antibody epitopes. Here we show that chemical cross-linking increases trimer stability, reducing binding of nonneutralizing antibodies while largely maintaining neutralizing antibody binding. Cross-linking followed by positive or negative antibody affinity selection of individual stable conformational variants further improved the antigenic and morphological characteristics of the trimers. This approach may be generally applicable to HIV-1 Env and also to other conformationally flexible pathogen antigens.


Cell Reports | 2013

Structural Basis for Enhanced HIV-1 Neutralization by a Dimeric Immunoglobulin G Form of the Glycan-Recognizing Antibody 2G12

Yunji Wu; Anthony P. West; Helen J. Kim; Matthew E. Thornton; Andrew B. Ward; Pamela J. Bjorkman

The human immunoglobulin G (IgG) 2G12 recognizes high-mannose carbohydrates on the HIV type 1 (HIV-1) envelope glycoprotein gp120. Its two antigen-binding fragments (Fabs) are intramolecularly domain exchanged, resulting in a rigid (Fab)2 unit including a third antigen-binding interface not found in antibodies with flexible Fab arms. We determined crystal structures of dimeric 2G12 IgG created by intermolecular domain exchange, which exhibits increased breadth and >50-fold increased neutralization potency compared with monomeric 2G12. The four Fab and two fragment crystalline (Fc) regions of dimeric 2G12 were localized at low resolution in two independent structures, revealing IgG dimers with two (Fab)2 arms analogous to the Fabs of conventional monomeric IgGs. Structures revealed three conformationally distinct dimers, demonstrating flexibility of the (Fab)2-Fc connections that was confirmed by electron microscopy, small-angle X-ray scattering, and binding studies. We conclude that intermolecular domain exchange, flexibility, and bivalent binding to allow avidity effects are responsible for the increased potency and breadth of dimeric 2G12.


Science | 2015

HIV-1 neutralizing antibodies induced by native-like envelope trimers

Rogier W. Sanders; Marit J. van Gils; Ronald Derking; Devin Sok; Thomas J. Ketas; Judith A. Burger; Gabriel Ozorowski; Albert Cupo; Cassandra A. Simonich; Leslie Goo; Heather Arendt; Helen J. Kim; Jeong Hyun Lee; Pavel Pugach; Melissa Williams; Gargi Debnath; Brian Moldt; Mariëlle J. van Breemen; Gözde Isik; Max Medina-Ramírez; Jaap Willem Back; Wayne C. Koff; Jean-Philippe Julien; Eva G. Rakasz; Michael S. Seaman; Kelly K. Lee; Per Johan Klasse; Celia C. LaBranche; William R. Schief; Ian A. Wilson

Collaboration


Dive into the Helen J. Kim's collaboration.

Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian A. Wilson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabriel Ozorowski

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge