Helen Ross-Adams
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen Ross-Adams.
Nature Genetics | 2012
Céline Bellenguez; Steve Bevan; Andreas Gschwendtner; Chris C. A. Spencer; Annette I. Burgess; M. Pirinen; Caroline Jackson; Matthew Traylor; Amy Strange; Zhan Su; Gavin Band; Paul D. Syme; Rainer Malik; Joanna Pera; Bo Norrving; Robin Lemmens; Colin Freeman; Renata Schanz; Tom James; Deborah Poole; Lee Murphy; Helen Segal; Lynelle Cortellini; Yu-Ching Cheng; Daniel Woo; Michael A. Nalls; Bertram Müller-Myhsok; Christa Meisinger; Udo Seedorf; Helen Ross-Adams
Genetic factors have been implicated in stroke risk, but few replicated associations have been reported. We conducted a genome-wide association study (GWAS) for ischemic stroke and its subtypes in 3,548 affected individuals and 5,972 controls, all of European ancestry. Replication of potential signals was performed in 5,859 affected individuals and 6,281 controls. We replicated previous associations for cardioembolic stroke near PITX2 and ZFHX3 and for large vessel stroke at a 9p21 locus. We identified a new association for large vessel stroke within HDAC9 (encoding histone deacetylase 9) on chromosome 7p21.1 (including further replication in an additional 735 affected individuals and 28,583 controls) (rs11984041; combined P = 1.87 × 10−11; odds ratio (OR) = 1.42, 95% confidence interval (CI) = 1.28–1.57). All four loci exhibited evidence for heterogeneity of effect across the stroke subtypes, with some and possibly all affecting risk for only one subtype. This suggests distinct genetic architectures for different stroke subtypes.
Annals of Neurology | 2009
Andreas Gschwendtner; Steve Bevan; John W. Cole; Anna Plourde; Mar Matarin; Helen Ross-Adams; Thomas Meitinger; Erich Wichmann; Braxton D. Mitchell; Karen L. Furie; Agnieszka Slowik; Stephen S. Rich; Paul D. Syme; Mary J. MacLeod; James F. Meschia; Jonathan Rosand; S. J. Kittner; Hugh S. Markus; Bertram Müller-Myhsok; Martin Dichgans
Recent studies have identified a major locus for risk for coronary artery disease and myocardial infarction on chromosome 9p21.3. Stroke, in particular, ischemic stroke caused by atherosclerotic disease, shares common mechanisms with myocardial infarction. We investigated whether the 9p21 region contributes to ischemic stroke risk.
Lancet Oncology | 2014
Emilie Lalonde; Adrian Ishkanian; Jenna Sykes; Michael Fraser; Helen Ross-Adams; Nicholas Erho; Mark J. Dunning; Silvia Halim; Alastair D. Lamb; Nathalie C Moon; Gaetano Zafarana; Anne Warren; Xianyue Meng; John Thoms; Michal R Grzadkowski; Alejandro Berlin; Cherry Have; Varune Rohan Ramnarine; Cindy Q. Yao; Chad A. Malloff; Lucia L. Lam; Honglei Xie; Nicholas J. Harding; Denise Y. F. Mak; Kenneth C. Chu; Lauren C. Chong; Dorota H Sendorek; Christine P'ng; Colin Collins; Jeremy A. Squire
BACKGROUND Clinical prognostic groupings for localised prostate cancers are imprecise, with 30-50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors. METHODS We used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment. FINDINGS Biochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1-9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65-0·76]) and radical prostatectomy (4·0 [1·6-9·7]; p=0·0024; AUC 0·57 [0·52-0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2-12]; p=0·019; AUC 0·67 [0·61-0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0-19]; p=0·0015; AUC 0·74 [95% CI 0·65-0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4-6·0]; p=0·0039; AUC 0·68 [95% CI 0·63-0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures. INTERPRETATION This is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials. FUNDING Movember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.
Human Molecular Genetics | 2013
Zsofia Kote-Jarai; Edward J. Saunders; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Tokhir Dadaev; Sarah Jugurn-Little; Helen Ross-Adams; Ali Amin Al Olama; Sara Benlloch; Silvia Halim; Roslin Russel; Alison M. Dunning; Craig Luccarini; Joe Dennis; David E. Neal; Freddie C. Hamdy; Jenny Donovan; Kenneth Muir; Graham G. Giles; Gianluca Severi; Fredrik Wiklund; Henrik Grönberg; Christopher A. Haiman; Fredrick R. Schumacher; Brian E. Henderson; Loic Le Marchand; Sara Lindström; Peter Kraft; David J. Hunter; Susan M. Gapstur
Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease.
PLOS ONE | 2010
Hayley C. Whitaker; Zsofia Kote-Jarai; Helen Ross-Adams; Anne Warren; Johanna Burge; Anne George; Elizabeth Bancroft; Sameer Jhavar; Daniel Leongamornlert; Malgorzata Tymrakiewicz; Edward J. Saunders; Elizabeth Page; Anita V. Mitra; Gillian Mitchell; Geoffrey J. Lindeman; D. Gareth Evans; Ignacio Blanco; Catherine Mercer; Wendy S. Rubinstein; Virginia E. Clowes; Fiona Douglas; Shirley Hodgson; Lisa Walker; Alan Donaldson; Louise Izatt; Huw Dorkins; Alison Male; Katherine L. Tucker; Alan M. F. Stapleton; Jimmy Lam
Background Microseminoprotein-beta (MSMB) regulates apoptosis and using genome-wide association studies the rs10993994 single nucleotide polymorphism in the MSMB promoter has been linked to an increased risk of developing prostate cancer. The promoter location of the risk allele, and its ability to reduce promoter activity, suggested that the rs10993994 risk allele could result in lowered MSMB in benign tissue leading to increased prostate cancer risk. Methodology/Principal Findings MSMB expression in benign and malignant prostate tissue was examined using immunohistochemistry and compared with the rs10993994 genotype. Urinary MSMB concentrations were determined by ELISA and correlated with urinary PSA, the presence or absence of cancer, rs10993994 genotype and age of onset. MSMB levels in prostate tissue and urine were greatly reduced with tumourigenesis. Urinary MSMB was better than urinary PSA at differentiating men with prostate cancer at all Gleason grades. The high risk allele was associated with heterogeneity of MSMB staining and loss of MSMB in both tissue and urine in benign prostate. Conclusions These data show that some high risk alleles discovered using genome-wide association studies produce phenotypic effects with potential clinical utility. We provide the first link between a low penetrance polymorphism for prostate cancer and a potential test in human tissue and bodily fluids. There is potential to develop tissue and urinary MSMB for a biomarker of prostate cancer risk, diagnosis and disease monitoring.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Chiara Grisanzio; Lillian Werner; David Y. Takeda; Bisola C. Awoyemi; Mark Pomerantz; Hiroki Yamada; Prasanna Sooriakumaran; Brian D. Robinson; Robert Leung; Anna C. Schinzel; Ian G. Mills; Helen Ross-Adams; David E. Neal; Masahito Kido; Toshihiro Yamamoto; Gillian Petrozziello; Edward C. Stack; Rosina T. Lis; Philip W. Kantoff; Massimo Loda; Oliver Sartor; Shin Egawa; Ashutosh Tewari; William C. Hahn; Matthew L. Freedman
One of the central goals of human genetics is to discover the genes and pathways driving human traits. To date, most of the common risk alleles discovered through genome-wide association studies (GWAS) map to nonprotein-coding regions. Because of our relatively poorer understanding of this part of the genome, the functional consequences of trait-associated variants pose a considerable challenge. To identify the genes through which risk loci act, we hypothesized that the risk variants are regulatory elements. For each of 12 known risk polymorphisms, we evaluated the correlation between risk allele status and transcript abundance for all annotated protein-coding transcripts within a 1-Mb interval. A total of 103 transcripts were evaluated in 662 prostate tissue samples [normal (n = 407) and tumor (n = 255)] from 483 individuals [European Americans (n = 233), Japanese (n = 127), and African Americans (n = 123)]. In a pooled analysis, 4 of the 12 risk variants were strongly associated with five transcripts (NUDT11, MSMB, NCOA4, SLC22A3, and HNF1B) in histologically normal tissue (P ≤ 0.001). Although associations were also observed in tumor tissue, they tended to be more attenuated. Previously, we showed that MSMB and NCOA4 participate in prostate cancer pathogenesis. Suppressing the expression of NUDT11, SLC22A3, and HNF1B influences cellular phenotypes associated with tumor-related properties in prostate cancer cells. Taken together, the data suggest that these transcripts contribute to prostate cancer pathogenesis.
EBioMedicine | 2015
Helen Ross-Adams; Alastair D. Lamb; Mark J. Dunning; Silvia Halim; Johan Lindberg; Charlie E. Massie; La Egevad; Roslin Russell; Antonio Ramos-Montoya; Sarah L. Vowler; Naomi L. Sharma; J. Kay; Hayley C. Whitaker; Jeremy Clark; Rachel Hurst; Vincent Gnanapragasam; Nimish Shah; Anne Warren; Colin S. Cooper; Andy G. Lynch; Rory Stark; Ian G. Mills; Henrik Grönberg; David E. Neal
Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene signatures (p = 0.0001). We further show how our molecular profiles can be used for the early detection of aggressive cases in a clinical setting, and inform treatment decisions. Interpretation For the first time in prostate cancer this study demonstrates the importance of integrated genomic analyses incorporating both benign and tumour tissue data in identifying molecular alterations leading to the generation of robust gene sets that are predictive of clinical outcome in independent patient cohorts.
Nature Genetics | 2016
Thomas Whitington; Ping Gao; Wei Song; Helen Ross-Adams; Alastair D. Lamb; Yuehong Yang; Ilaria Svezia; Daniel Klevebring; Ian G. Mills; Robert Karlsson; Silvia Halim; Mark J. Dunning; Lars Egevad; Anne Warren; David E. Neal; Henrik Grönberg; Johan Lindberg; Gong-Hong Wei; Fredrik Wiklund
Molecular characterization of genome-wide association study (GWAS) loci can uncover key genes and biological mechanisms underpinning complex traits and diseases. Here we present deep, high-throughput characterization of gene regulatory mechanisms underlying prostate cancer risk loci. Our methodology integrates data from 295 prostate cancer chromatin immunoprecipitation and sequencing experiments with genotype and gene expression data from 602 prostate tumor samples. The analysis identifies new gene regulatory mechanisms affected by risk locus SNPs, including widespread disruption of ternary androgen receptor (AR)-FOXA1 and AR-HOXB13 complexes and competitive binding mechanisms. We identify 57 expression quantitative trait loci at 35 risk loci, which we validate through analysis of allele-specific expression. We further validate predicted regulatory SNPs and target genes in prostate cancer cell line models. Finally, our integrated analysis can be accessed through an interactive visualization tool. This analysis elucidates how genome sequence variation affects disease predisposition via gene regulatory mechanisms and identifies relevant genes for downstream biomarker and drug development.
Embo Molecular Medicine | 2014
Antonio Ramos-Montoya; Alastair D. Lamb; Roslin Russell; Thomas Carroll; Sarah Jurmeister; Núria Galeano-Dalmau; Charlie E. Massie; Joan Boren; Helene Bon; Vasiliki Theodorou; Maria Vias; Greg Shaw; Naomi L. Sharma; Helen Ross-Adams; Helen E. Scott; Sarah L. Vowler; William J. Howat; Anne Warren; Richard F. Wooster; Ian G. Mills; David E. Neal
Castrate‐resistant prostate cancer (CRPC) is poorly characterized and heterogeneous and while the androgen receptor (AR) is of singular importance, other factors such as c‐Myc and the E2F family also play a role in later stage disease. HES6 is a transcription co‐factor associated with stem cell characteristics in neural tissue. Here we show that HES6 is up‐regulated in aggressive human prostate cancer and drives castration‐resistant tumour growth in the absence of ligand binding by enhancing the transcriptional activity of the AR, which is preferentially directed to a regulatory network enriched for transcription factors such as E2F1. In the clinical setting, we have uncovered a HES6‐associated signature that predicts poor outcome in prostate cancer, which can be pharmacologically targeted by inhibition of PLK1 with restoration of sensitivity to castration. We have therefore shown for the first time the critical role of HES6 in the development of CRPC and identified its potential in patient‐specific therapeutic strategies.
European Urology | 2016
Greg Shaw; Hayley C. Whitaker; Marie Corcoran; Mark J. Dunning; Hayley Luxton; Jonathan Kay; Charlie E. Massie; Jodi L. Miller; Alastair D. Lamb; Helen Ross-Adams; Roslin Russell; Adam W. Nelson; Matthew Eldridge; Andy G. Lynch; Antonio Ramos-Montoya; Ian G. Mills; Angela E. Taylor; Wiebke Arlt; Nimish Shah; Anne Warren; David E. Neal
The androgen receptor (AR) is the dominant growth factor in prostate cancer (PCa). Therefore, understanding how ARs regulate the human transcriptome is of paramount importance. The early effects of castration on human PCa have not previously been studied 27 patients medically castrated with degarelix 7 d before radical prostatectomy. We used mass spectrometry, immunohistochemistry, and gene expression array (validated by reverse transcription-polymerase chain reaction) to compare resected tumour with matched, controlled, untreated PCa tissue. All patients had levels of serum androgen, with reduced levels of intraprostatic androgen at prostatectomy. We observed differential expression of known androgen-regulated genes (TMPRSS2, KLK3, CAMKK2, FKBP5). We identified 749 genes downregulated and 908 genes upregulated following castration. AR regulation of α-methylacyl-CoA racemase expression and three other genes (FAM129A, RAB27A, and KIAA0101) was confirmed. Upregulation of oestrogen receptor 1 (ESR1) expression was observed in malignant epithelia and was associated with differential expression of ESR1-regulated genes and correlated with proliferation (Ki-67 expression). Patient summary This first-in-man study defines the rapid gene expression changes taking place in prostate cancer (PCa) following castration. Expression levels of the genes that the androgen receptor regulates are predictive of treatment outcome. Upregulation of oestrogen receptor 1 is a mechanism by which PCa cells may survive despite castration.