Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hélène M. Savignac is active.

Publication


Featured researches published by Hélène M. Savignac.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve

Javier A. Bravo; Paul Forsythe; Marianne V. Chew; Emily Escaravage; Hélène M. Savignac; Timothy G. Dinan; John Bienenstock; John F. Cryan

There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABAAα2 mRNA expression in the prefrontal cortex and amygdala, but increased GABAAα2 in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut–brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.


Neurogastroenterology and Motility | 2014

Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice.

Hélène M. Savignac; Barry Kiely; Timothy G. Dinan; John F. Cryan

Accumulating evidence suggests that commensal bacteria consumption has the potential to have a positive impact on stress‐related psychiatric disorders. However, the specific bacteria influencing behaviors related to anxiety and depression remain unclear. To this end, we compared the effects of two different Bifidobacteria on anxiety and depression‐like behavior; an antidepressant was also used as a comparator.


Neuroscience | 2014

Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats

Siobhain M. O'Mahony; Valeria D. Felice; Kenneth Nally; Hélène M. Savignac; Marcus J. Claesson; Paul Scully; J. Woznicki; Niall P. Hyland; Fergus Shanahan; Eamonn M. M. Quigley; Julian Roberto Marchesi; Paul W. O'Toole; T. L. Dinan; John F. Cryan

Disruption of bacterial colonization during the early postnatal period is increasingly being linked to adverse health outcomes. Indeed, there is a growing appreciation that the gut microbiota plays a role in neurodevelopment. However, there is a paucity of information on the consequences of early-life manipulations of the gut microbiota on behavior. To this end we administered an antibiotic (vancomycin) from postnatal days 4-13 to male rat pups and assessed behavioral and physiological measures across all aspects of the brain-gut axis. In addition, we sought to confirm and expand the effects of early-life antibiotic treatment using a different antibiotic strategy (a cocktail of pimaricin, bacitracin, neomycin; orally) during the same time period in both female and male rat pups. Vancomycin significantly altered the microbiota, which was restored to control levels by 8 weeks of age. Notably, vancomycin-treated animals displayed visceral hypersensitivity in adulthood without any significant effect on anxiety responses as assessed in the elevated plus maze or open field tests. Moreover, cognitive performance in the Morris water maze was not affected by early-life dysbiosis. Immune and stress-related physiological responses were equally unaffected. The early-life antibiotic-induced visceral hypersensitivity was also observed in male rats given the antibiotic cocktail. Both treatments did not alter visceral pain perception in female rats. Changes in visceral pain perception in males were paralleled by distinct decreases in the transient receptor potential cation channel subfamily V member 1, the α-2A adrenergic receptor and cholecystokinin B receptor. In conclusion, a temporary disruption of the gut microbiota in early-life results in very specific and long-lasting changes in visceral sensitivity in male rats, a hallmark of stress-related functional disorders of the brain-gut axis such as irritable bowel disorder.


Behavioural Brain Research | 2015

Bifidobacteria modulate cognitive processes in an anxious mouse strain.

Hélène M. Savignac; Monica Tramullas; Barry Kiely; Timothy G. Dinan; John F. Cryan

Increasing evidence suggests that a brain-gut-microbiome axis exists, which has the potential to play a major role in modulating behaviour. However, the role of this axis in cognition remains relatively unexplored. Probiotics, which are commensal bacteria offering potential health benefit, have been shown to decrease anxiety, depression and visceral pain-related behaviours. In this study, we investigate the potential of two Bifidobacteria strains to modulate cognitive processes and visceral pain sensitivity. Adult male BALB/c mice were fed daily for 11 weeks with B. longum 1714, B. breve 1205 or vehicle treatment. Starting at week 4, animals were behaviourally assessed in a battery of tests relevant to different aspects of cognition, as well as locomotor activity and visceral pain. In the object recognition test, B. longum 1714-fed mice discriminated between the two objects faster than all other groups and B. breve 1205-fed mice discriminated faster than vehicle animals. In the Barnes maze, B. longum 1714-treated mice made fewer errors than other groups, suggesting a better learning. In the fear conditioning, B. longum 1714-treated group also showed better learning and memory, yet presenting the same extinction learning profile as controls. None of the treatments affected visceral sensitivity. Altogether, these data suggest that B. longum 1714 had a positive impact on cognition and also that the effects of individual Bifidobacteria strains do not generalise across the species. Clinical validation of the effects of probiotics on cognition is now warranted.


Neuroscience | 2011

Increased sensitivity to the effects of chronic social defeat stress in an innately anxious mouse strain.

Hélène M. Savignac; Beate C. Finger; Riccardo Pizzo; Olivia F. O'Leary; Timothy G. Dinan; John F. Cryan

Stress and genetic predisposition are two of the major risk factors for a variety of psychiatric illnesses. Inbred mouse strains are considered useful tools in dissecting the genetic basis of complex disorders. Indeed, mice of the C57BL/6 and BALB/c strains, differing markedly in anxiety behaviours, are among the most widely used in psychopharmacological research. However, there is a paucity of studies investigating the impact of social stress in these two strains. Moreover, whether these two mouse strains exhibit different sensitivities to chronic social defeat stress remains poorly studied. Thus in this study we compared the impact of repeated (10 days) social defeat stress on a variety of behavioural and endocrine parameters including social interaction, locomotor activity, plasma corticosterone, body weight and stress-related physiological parameters in both mouse strains. Given that the duration of stress exposure may differentially affect such responses we also compared stressors of short (Social Defeat-Short; SD-S) and of long (Social Defeat-Long; SD-L) duration. Our results show that although mice from both strains were defeated in both social defeat paradigms, only BALB/c mice displayed social interaction impairments following SD-S, whereas both strains were behaviourally sensitive to SD-L. Moreover, both strains also differed in some of the physiological alterations induced by social defeat stress. Specifically, SD-S did not induce any change in corticosterone levels in either of the two strains, whereas SD-L was able to induce significant changes in C57BL/6 mice only. SD-S induced differential effects on bodyweight gain in both strains, increasing it in C57BL/6 and decreasing it in BALB/c mice, whereas SD-L had no effect. On the other hand, exposure to SD-S resulted in cardiac hypertrophy in C57BL/6 mice and SD-L induced spleen hypertrophy and thymus atrophy in BALB/c mice in addition to decreasing faecal output. Overall, the innately anxious BALB/c mice were more sensitive to social stress than C57BL/6, with differential behavioural and physiological alterations emerging as a function of stress severity. These data suggest different coping strategies to social interaction stress between the two mouse strains. The genetic basis of this stress-resilience/susceptibility warrants further investigation.


Frontiers in Behavioral Neuroscience | 2011

Resistance to early-life stress in mice: effects of genetic background and stress duration.

Hélène M. Savignac; Timothy G. Dinan; John F. Cryan

Early-life stress can induce marked behavioral and physiological impairments in adulthood including cognitive deficits, depression, anxiety, and gastrointestinal dysfunction. Although robust rat models of early-life stress exist there are few established effective paradigms in the mouse. Genetic background and protocol parameters used are two critical variables in such model development. Thus we investigated the impact of two different early-life stress protocols in two commonly used inbred mouse strains. C57BL/6 and innately anxious BALB/c male mice were maternally deprived 3 h daily, either from postnatal day 1 to 14 (protocol 1) or 6 to 10 (protocol 2). Animals were assessed in adulthood for cognitive performance (spontaneous alternation behavior test), anxiety [open-field, light/dark box (L/DB), and elevated plus maze (EPM) tests], and depression-related behaviors (forced swim test) in addition to stress-sensitive physiological changes. Overall, the results showed that early-life stressed mice from both strains displayed good cognitive ability and no elevations in anxiety. However, paradoxical changes occurred in C57BL/6 mice as the longer protocol (protocol 1) decreased anxiety in the L/DB and increased exploration in the EPM. In BALB/c mice there were also limited effects of maternal separation with both separation protocols inducing reductions in stress-induced defecation and protocol 1 reducing the colon length. These data suggest that, independent of stress duration, mice from both strains were on the whole resilient to the maladaptive effects of early-life stress. Thus maternal separation models of brain–gut axis dysfunction should rely on either different stressor protocols or other strains of mice.


Behavioural Brain Research | 2011

The effects of repeated social interaction stress on behavioural and physiological parameters in a stress-sensitive mouse strain

Hélène M. Savignac; Niall P. Hyland; Timothy G. Dinan; John F. Cryan

Stress can impair the immune, endocrine and nervous systems. Such perturbations can also affect brain-gut axis communication and lead to functional gastrointestinal disorders such as irritable bowel syndrome (IBS). IBS is a common yet poorly understood disorder which is often co-morbid with anxiety and depression. As there are few mouse models of IBS, this study aimed to investigate if a short and intense social stress which involved bouts of physical interaction could induce behavioural and physiological changes similar to those observed in IBS patients in the innately anxious BALB/c mice. Male BALB/c mice were exposed for 2h to an aggressive male intruder for acute (one-day) or chronic (six-day) stress. Behaviour was analyzed and weight monitored. Two hours post stress, trunk blood and tissues were collected. Plasma was analyzed for inflammatory cytokines and corticosterone and morphological damage to the colon was also assessed. Mice displayed either dominant or submissive status following repeated intruder exposure. Behavioural status correlated with an increase in corticosterone and pro-inflammatory cytokines in both acute and chronic submissive groups. Mice from both status groups had body weight loss coupled with mild damage to the colon. Together these data show that short-term social interaction stress exposure was able to induce behavioural and physiological impairments similar to that observed in patients with dysregulated brain-gut axis function. Moreover, these data demonstrate that social stress-based mouse models may be appropriate for interrogating the mechanisms underlying such disorders.


Proceedings of the National Academy of Sciences of the United States of America | 2014

GABAB(1) receptor subunit isoforms differentially regulate stress resilience.

Olivia F. O’Leary; Daniela Felice; Stefano Galimberti; Hélène M. Savignac; Javier A. Bravo; Tadhg Crowley; Malika El Yacoubi; Jean-Marie Vaugeois; Martin Gassmann; Bernhard Bettler; Timothy G. Dinan; John F. Cryan

Significance Stress can increase susceptibility to developing psychiatric disorders, including depression. Understanding the neurobiological mechanisms underlying stress resilience and susceptibility is key to identifying novel targets for the development of more effective treatments for stress-related psychiatric disorders. Here we show that specific isoforms of GABAB receptor subunits differentially regulate stress resilience. Specifically, GABAB(1a)−/− mice are more susceptible whereas GABAB(1b)−/− mice are more resilient to stress-induced anhedonia and psychosocial stress-induced social withdrawal, two features of depression. Furthermore, GABAB(1b)−/− mice were resilient to stress-induced decreases in the survival of newly born cells in the adult hippocampus, and hippocampal GABAB(1b) expression was increased in a genetic mouse model of depression. Taken together, GABAB receptor subunit isoforms may represent novel therapeutic targets for stress-related disorders. Stressful life events increase the susceptibility to developing psychiatric disorders such as depression; however, many individuals are resilient to such negative effects of stress. Determining the neurobiology underlying this resilience is instrumental to the development of novel and more effective treatments for stress-related psychiatric disorders. GABAB receptors are emerging therapeutic targets for the treatment of stress-related disorders such as depression. These receptors are predominantly expressed as heterodimers of a GABAB(2) subunit with either a GABAB(1a) or a GABAB(1b) subunit. Here we show that mice lacking the GABAB(1b) receptor isoform are more resilient to both early-life stress and chronic psychosocial stress in adulthood, whereas mice lacking GABAB(1a) receptors are more susceptible to stress-induced anhedonia and social avoidance compared with wild-type mice. In addition, increased hippocampal expression of the GABAB(1b) receptor subunit is associated with a depression-like phenotype in the helpless H/Rouen genetic mouse model of depression. Stress resilience in GABAB(1b)−/− mice is coupled with increased proliferation and survival of newly born cells in the adult ventral hippocampus and increased stress-induced c-Fos activation in the hippocampus following early-life stress. Taken together, the data suggest that GABAB(1) receptor subunit isoforms differentially regulate the deleterious effects of stress and, thus, may be important therapeutic targets for the treatment of depression.


Gastroenterology | 2010

25 Early-Life Dysbiosis Leads to Visceral Hypersensitivity in Adulthood

Siobhain M. O'Mahony; Hélène M. Savignac; Timothy C. O'Brien; Paul Scully; Eamonn M. M. Quigley; Julian Roberto Marchesi; Paul W. O'Toole; Timothy G. Dinan; John F. Cryan


Pharmacology, Biochemistry and Behavior | 2013

Hippocampal group III mGlu receptor mRNA levels are not altered in specific mouse models of stress, depression and antidepressant action

Richard M. O'Connor; Matteo M. Pusceddu; Olivia F. O'Leary; Hélène M. Savignac; Javier A. Bravo; Malika El Yacoubi; J.M. Vaugeois; Timothy G. Dinan; John F. Cryan

Collaboration


Dive into the Hélène M. Savignac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malika El Yacoubi

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Barry Kiely

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Scully

University College Cork

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge