Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Javier A. Bravo is active.

Publication


Featured researches published by Javier A. Bravo.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve

Javier A. Bravo; Paul Forsythe; Marianne V. Chew; Emily Escaravage; Hélène M. Savignac; Timothy G. Dinan; John Bienenstock; John F. Cryan

There is increasing, but largely indirect, evidence pointing to an effect of commensal gut microbiota on the central nervous system (CNS). However, it is unknown whether lactic acid bacteria such as Lactobacillus rhamnosus could have a direct effect on neurotransmitter receptors in the CNS in normal, healthy animals. GABA is the main CNS inhibitory neurotransmitter and is significantly involved in regulating many physiological and psychological processes. Alterations in central GABA receptor expression are implicated in the pathogenesis of anxiety and depression, which are highly comorbid with functional bowel disorders. In this work, we show that chronic treatment with L. rhamnosus (JB-1) induced region-dependent alterations in GABAB1b mRNA in the brain with increases in cortical regions (cingulate and prelimbic) and concomitant reductions in expression in the hippocampus, amygdala, and locus coeruleus, in comparison with control-fed mice. In addition, L. rhamnosus (JB-1) reduced GABAAα2 mRNA expression in the prefrontal cortex and amygdala, but increased GABAAα2 in the hippocampus. Importantly, L. rhamnosus (JB-1) reduced stress-induced corticosterone and anxiety- and depression-related behavior. Moreover, the neurochemical and behavioral effects were not found in vagotomized mice, identifying the vagus as a major modulatory constitutive communication pathway between the bacteria exposed to the gut and the brain. Together, these findings highlight the important role of bacteria in the bidirectional communication of the gut–brain axis and suggest that certain organisms may prove to be useful therapeutic adjuncts in stress-related disorders such as anxiety and depression.


Current Opinion in Pharmacology | 2012

Communication between gastrointestinal bacteria and the nervous system

Javier A. Bravo; Marcela Julio-Pieper; Paul Forsythe; Wolfgang A. Kunze; Timothy G. Dinan; John Bienenstock; John F. Cryan

In the past few years, intestinal microbiota has emerged as a novel target for the treatment of gut-brain axis alterations. These include functional gastrointestinal disorders, such as irritable bowel syndrome (IBS), which can be comorbid with stress-related psychiatric conditions. Thus, modulation of the microbiota (e.g. with the use of probiotics) could be proposed as a novel strategy not only for the treatment of IBS but also as an adjuvant for psychiatric treatment of anxiety and depression.


Behavioural Pharmacology | 2009

Desipramine prevents stress-induced changes in depressive-like behavior and hippocampal markers of neuroprotection.

Javier A. Bravo; Gabriela Díaz-Véliz; Sergio Mora; José L. Ulloa; Viviana M. Berthoud; Paola Morales; Sandor Arancibia; Jenny L. Fiedler

Extracellular signal-regulated kinases (ERKs) are widely implicated in multiple physiological processes. Although ERK1/2 has been proposed as a common mediator of antidepressant action in naive rodents, it remains to be determined whether the ERK1/2 pathway plays a role in depressive disorder. Here, we investigated whether chronic restraint stress (14 days) and antidepressant treatment [desipramine (DMI), 10 mg/kg intraperitoneally] induce changes in animal behavior and hippocampal levels of phospho-ERK1/2 and its substrate phospho-cAMP response element-binding protein (CREB). The results indicated that stress-induced depressive-like behaviors were correlated with an increase in P-ERK1/2 and P-CREB in the hippocampus evaluated by immunoblot analysis. As an indication of CREB activity, we evaluated changes in mRNA levels of its target genes. Brain-derived neurotrophic factor (BDNF) mRNA was reduced by stress, an effect prevented by DMI only in the CA3 area of hippocampus. Bcl-2 mRNA was reduced in all hippocampal regions by stress, an effect independent of DMI treatment. However, immunoblot from hippocampal extracts revealed that stress increased BCL-2 levels, an effect prevented by chronic DMI. These results suggest that ERKs and BDNF may be altered in depressive disorder, modifications that are sensitive to DMI action. In contrast, the stress-induced increase in BCL-2 may correspond to a neuroprotective response.


The International Journal of Neuropsychopharmacology | 2011

Alterations in the central CRF system of two different rat models of comorbid depression and functional gastrointestinal disorders.

Javier A. Bravo; Timothy G. Dinan; John F. Cryan

Clinical evidence suggests comorbidity between depression and irritable bowel syndrome (IBS). Early-life stress and genetic predisposition are key factors in the pathophysiology of both IBS and depression. Thus, neonatal maternal separation (MS), and the Wistar-Kyoto (WKY) rat, a genetically stress-sensitive rat strain, are two animal models of depression that display increased visceral hypersensitivity and alterations in the hypothalamic-pituitary-adrenal axis. Corticotrophin-releasing factor (CRF) is the primary peptide regulating this axis, acting through two receptors: CRF1 and CRF2. The central CRF system is also a key regulator in the stress response. However, there is a paucity of studies investigating alterations in the central CRF system of adult MS or WKY animals. Using in-situ hybridization we demonstrate that CRF mRNA is increased in the paraventricular nucleus (PVN) of WKY rats and the dorsal raphé nucleus (DRN) of MS animals, compared to Sprague-Dawley and non-separated controls, respectively. Additionally, CRF1 mRNA was higher in the PVN, amygdala and DRN of both animal models, along with high levels of CRF1 mRNA in the hippocampus of WKY animals compared to control animals. Finally, CRF2 mRNA was lower in the DRN of MS and WKY rats compared to control animals, and in the hippocampus and amygdala of MS rats. These results show that the central CRF system is altered in both animal models. Such alterations may affect HPA axis regulation, contribute to behavioural changes associated with stress-related disorders, and alter the affective component of visceral pain modulation, which is enhanced in IBS patients.


Neuropsychopharmacology | 2012

Genetic Strain Differences in Learned Fear Inhibition Associated with Variation in Neuroendocrine, Autonomic, and Amygdala Dendritic Phenotypes

Marguerite Camp; Kathryn P. MacPherson; Lauren Lederle; Carolyn Graybeal; Stefano Gaburro; Lauren DeBrouse; Jessica Ihne; Javier A. Bravo; Richard M. O'Connor; Stephane Ciocchi; Cara L. Wellman; Andreas Lüthi; John F. Cryan; Nicolas Singewald; Andrew B. Holmes

Mood and anxiety disorders develop in some but not all individuals following exposure to stress and psychological trauma. However, the factors underlying individual differences in risk and resilience for these disorders, including genetic variation, remain to be determined. Isogenic inbred mouse strains provide a valuable approach to elucidating these factors. Here, we performed a comprehensive examination of the extinction-impaired 129S1/SvImJ (S1) inbred mouse strain for multiple behavioral, autonomic, neuroendocrine, and corticolimbic neuronal morphology phenotypes. We found that S1 exhibited fear overgeneralization to ambiguous contexts and cues, impaired context extinction and impaired safety learning, relative to the (good-extinguishing) C57BL/6J (B6) strain. Fear overgeneralization and impaired extinction was rescued by treatment with the front-line anxiety medication fluoxetine. Telemetric measurement of electrocardiogram signals demonstrated autonomic disturbances in S1 including poor recovery of fear-induced suppression of heart rate variability. S1 with a history of chronic restraint stress displayed an attenuated corticosterone (CORT) response to a novel, swim stressor. Conversely, previously stress-naive S1 showed exaggerated CORT responses to acute restraint stress or extinction training, insensitivity to dexamethasone challenge, and reduced hippocampal CA3 glucocorticoid receptor mRNA, suggesting downregulation of negative feedback control of the hypothalamic–pituitary–adrenal axis. Analysis of neuronal morphology in key neural nodes within the fear and extinction circuit revealed enlarged dendritic arbors in basolateral amygdala neurons in S1, but normal infralimbic cortex and prelimbic cortex dendritic arborization. Collectively, these data provide convergent support for the utility of the S1 strain as a tractable model for elucidating the neural, molecular and genetic basis of persistent, excessive fear.


Pharmacology, Biochemistry and Behavior | 2010

Comparison of the antidepressant sertraline on differential depression-like behaviors elicited by restraint stress and repeated corticosterone administration

José L. Ulloa; P. Castañeda; C. Berríos; Gabriela Díaz-Véliz; Sergio Mora; Javier A. Bravo; K. Araneda; C. Menares; Paola Morales; Jenny L. Fiedler

Depressive disorder involves emotional, cognitive, autonomic and endocrine alterations and also evidences support the role of stress in the development of this disorder. Because the hypothalamic-pituitary-adrenal axis is involved in the stress response with a concomitant rise in plasma corticoids, the present study compares the antidepressant effects of sertraline (10mg/kg, i.p.) on behavioral changes elicited by (i) restraint stress (2.5h/day for 13days) and (ii) corticosterone injections (30mg/kg, s.c., for 13days). Stressed animals, but not corticosterone-treated animals displayed anxiety behavior and a reduction in the acquisition of a conditioned avoidance response to 25% of control levels (8.0±2.2 vs. 31.7±3.2), being this effect partly sensitive to sertraline. Stressed, but not corticosterone-treated, animals displayed an increased escape failure compared with the control group (24.6%±3.5 vs. 1.6±0.7), an effect partly prevented by sertraline treatment (7.3%±2.0). Both stressed rats and corticosterone-treated rats showed an increase in immobility in the forced swim test, an effect prevented by sertraline. These results suggest that the altered behaviors elicited by stress and corticosterone can be explained by neural modifications that are sensitive to the sertraline antidepressant.


Proceedings of the National Academy of Sciences of the United States of America | 2014

GABAB(1) receptor subunit isoforms differentially regulate stress resilience.

Olivia F. O’Leary; Daniela Felice; Stefano Galimberti; Hélène M. Savignac; Javier A. Bravo; Tadhg Crowley; Malika El Yacoubi; Jean-Marie Vaugeois; Martin Gassmann; Bernhard Bettler; Timothy G. Dinan; John F. Cryan

Significance Stress can increase susceptibility to developing psychiatric disorders, including depression. Understanding the neurobiological mechanisms underlying stress resilience and susceptibility is key to identifying novel targets for the development of more effective treatments for stress-related psychiatric disorders. Here we show that specific isoforms of GABAB receptor subunits differentially regulate stress resilience. Specifically, GABAB(1a)−/− mice are more susceptible whereas GABAB(1b)−/− mice are more resilient to stress-induced anhedonia and psychosocial stress-induced social withdrawal, two features of depression. Furthermore, GABAB(1b)−/− mice were resilient to stress-induced decreases in the survival of newly born cells in the adult hippocampus, and hippocampal GABAB(1b) expression was increased in a genetic mouse model of depression. Taken together, GABAB receptor subunit isoforms may represent novel therapeutic targets for stress-related disorders. Stressful life events increase the susceptibility to developing psychiatric disorders such as depression; however, many individuals are resilient to such negative effects of stress. Determining the neurobiology underlying this resilience is instrumental to the development of novel and more effective treatments for stress-related psychiatric disorders. GABAB receptors are emerging therapeutic targets for the treatment of stress-related disorders such as depression. These receptors are predominantly expressed as heterodimers of a GABAB(2) subunit with either a GABAB(1a) or a GABAB(1b) subunit. Here we show that mice lacking the GABAB(1b) receptor isoform are more resilient to both early-life stress and chronic psychosocial stress in adulthood, whereas mice lacking GABAB(1a) receptors are more susceptible to stress-induced anhedonia and social avoidance compared with wild-type mice. In addition, increased hippocampal expression of the GABAB(1b) receptor subunit is associated with a depression-like phenotype in the helpless H/Rouen genetic mouse model of depression. Stress resilience in GABAB(1b)−/− mice is coupled with increased proliferation and survival of newly born cells in the adult ventral hippocampus and increased stress-induced c-Fos activation in the hippocampus following early-life stress. Taken together, the data suggest that GABAB(1) receptor subunit isoforms differentially regulate the deleterious effects of stress and, thus, may be important therapeutic targets for the treatment of depression.


Alimentary Pharmacology & Therapeutics | 2014

Review article: intestinal barrier dysfunction and central nervous system disorders--a controversial association.

Marcela Julio-Pieper; Javier A. Bravo; E. Aliaga; Martin Gotteland

Central nervous system (CNS) development and physiopathology are greatly affected by environmental stimuli. The intestinal barrier restricts the entrance of toxins, pathogens, and antigens while modulating the expression of various neuroactive compounds. The existence of a rich gut‐to‐brain communication raises the possibility that intestinal barrier alterations may take part in the pathophysiology of CNS disorders.


Reproductive Biology and Endocrinology | 2006

Effects of nerve growth factor (NGF) on blood vessels area and expression of the angiogenic factors VEGF and TGFbeta1 in the rat ovary

Marcela Julio-Pieper; Hernán E. Lara; Javier A. Bravo; Carmen Romero

BackgroundAngiogenesis is a crucial process in follicular development and luteogenesis. The nerve growth factor (NGF) promotes angiogenesis in various tissues. An impaired production of this neurotrophin has been associated with delayed wound healing. A variety of ovarian functions are regulated by NGF, but its effects on ovarian angiogenesis remain unknown. The aim of this study was to elucidate if NGF modulates 1) the amount of follicular blood vessels and 2) ovarian expression of two angiogenic factors: vascular endothelial growth factor (VEGF) and transforming growth factor beta 1 (TGFbeta1), in the rat ovary.ResultsIn cultured neonatal rat ovaries, NGF increased VEGF mRNA and protein levels, whereas TGFbeta1 expression did not change. Sectioning of the superior ovarian nerve, which increases ovarian NGF protein content, augmented VEGF immunoreactivity and the area of capillary vessels in ovaries of prepubertal rats compared to control ovaries.ConclusionResults indicate that NGF may be important in the maintenance of the follicular and luteal vasculature in adult rodents, either indirectly, by increasing the expression of VEGF in the ovary, or directly via promoting the proliferation of vascular cells. This data suggests that a disruption on NGF regulation could be a component in ovarian disorders related with impaired angiogenesis.


Frontiers in Molecular Neuroscience | 2014

Early-life stress induces persistent alterations in 5-HT1A receptor and serotonin transporter mRNA expression in the adult rat brain

Javier A. Bravo; Timothy G. Dinan; John F. Cryan

Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS) is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT) mRNA expression in brain areas involved in the control of emotions, memory, and fear as well as in regions controlling the central serotonergic tone. To test this, Sprague–Dawley rats were subjected to MS for 3 h daily during postnatal days 2–12. As control, age matched rats were non-separated (NS) from their dams. When animals reached adulthood (11–13 weeks) brain was extracted and mRNA expression of 5-HT1A receptor in amygdala, hippocampus and dorsal raphé nucleus (DRN) and SERT in the DRN was analyzed through in situ hybridisation. Densitometric analysis revealed that MS increased 5-HT1A receptor mRNA expression in the amygdala, and reduced its expression in the DRN, but no changes were observed in the hippocampus in comparison to NS controls. Also, MS reduced SERT mRNA expression in the DRN when compared to NS rats. These results suggest that early-life stress induces persistent changes in 5-HT1A receptor and SERT mRNA expression in key brain regions involved in the development of stress-related psychiatric disorders. The reduction in SERT mRNA indicates an alteration that is in line with clinical findings such as polymorphic variants in individuals with higher risk of depression. These data may help to understand how early-life stress contributes to the development of mood disorders in adulthood.

Collaboration


Dive into the Javier A. Bravo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge