Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Henry Oppermann is active.

Publication


Featured researches published by Henry Oppermann.


Cancer Biology & Therapy | 2012

Hedgehog signaling in glioblastoma multiforme

Stefanie Braun; Henry Oppermann; Antje Mueller; Christof Renner; Amalya Hovhannisyan; Rainer Baran-Schmidt; Rolf Gebhardt; Alan R. Hipkiss; Joachim Thiery; Jürgen Meixensberger; Frank Gaunitz

Glioblastoma multiforme (GBM) is the most malignant brain tumor in adults with a median survival of 14.6 mo under the best available treatment. New treatment strategies are therefore urgently required, for which a profound understanding of tumor biology is necessary. Much effort has been devoted to tumor-specific aberrant signaling processes. Recently it was discovered that the transcription factor Gli1, which is activated by hedgehog signaling, is a highly predictive marker in GBM, as determined by immunohistochemistry. To determine whether GBM cells have transcriptionally active Gli1, we performed experiments with reporter genes with cells isolated from surgically removed human tumors and cell lines. We also determined whether the hedgehog signaling inhibitor cyclopamine influences reporter gene expression and cell viability, and we determined the expression of Gli1, SHH and Patched1 by quantitative real-time RT-PCR. Reporter gene analysis of nine cultures and four cell lines demonstrated a significantly enhanced transcriptional activity in six tumor cell cultures and all cell lines. Analysis of cell viability in the presence of cyclopamine revealed a response of all cell cultures with the exception of one primary culture and one cell line, but only one cell line responded to cyclopamine with reduced hedgehog signaling activity. This indicates that the toxicity of cyclopamine toward GBM cells is independent from hedgehog signaling. Since no correlation between hedgehog activity and SHH, Gli1 and Patched1 mRNA levels was observed we conclude that other mechanisms aside from transcriptional regulation of these factors are responsible for hedgehog activity in tumor cells derived from GBM.


Oncotarget | 2016

Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner

Victoria I. Bunik; Garik Mkrtchyan; Aneta Grabarska; Henry Oppermann; Danilo M. Daloso; Wagner L. Araújo; Małgorzata Juszczak; Wojciech Rzeski; Lucien Bettendorff; Alisdair R. Fernie; Jürgen Meixensberger; Andrzej Stepulak; Frank Gaunitz

2-Oxoglutarate dehydrogenase (OGDH) of the tricarboxylic acid (TCA) cycle is often implied to be inactive in cancer, but this was not experimentally tested. We addressed the question through specific inhibition of OGDH by succinyl phosphonate (SP). SP action on different cancer cells was investigated using indicators of cellular viability and reactive oxygen species (ROS), metabolic profiling and transcriptomics. Relative sensitivity of various cancer cells to SP changed with increasing SP exposure and could differ in the ATP- and NAD(P)H-based assays. Glioblastoma responses to SP revealed metabolic sub-types increasing or decreasing cellular ATP/NAD(P)H ratio under OGDH inhibition. Cancer cell homeostasis was perturbed also when viability indicators were SP-resistant, e.g. in U87 and N2A cells. The transcriptomics database analysis showed that the SP-sensitive cells, such as A549 and T98G, exhibit the lowest expression of OGDH compared to other TCA cycle enzymes, associated with higher expression of affiliated pathways utilizing 2-oxoglutarate. Metabolic profiling confirmed the dependence of cellular SP reactivity on cell-specific expression of the pathways. Thus, oxidative decarboxylation of 2-oxoglutarate is significant for the interdependent homeostasis of NAD(P)H, ATP, ROS and key metabolites in various cancer cells. Assessment of cell-specific responses to OGDH inhibition is of diagnostic value for anticancer strategies.


Amino Acids | 2014

The antineoplastic effect of carnosine is accompanied by induction of PDK4 and can be mimicked by l-histidine

Ulrike Letzien; Henry Oppermann; Jürgen Meixensberger; Frank Gaunitz

Carnosine (β-alanyl-l-histidine) is a naturally occurring dipeptide that shows antineoplastic effects in cell culture as well as in animal experiments. Since its mode of action and the targets at the molecular level have not yet been elucidated, we performed qRT-PCR experiments with RNA isolated from glioblastoma cell lines treated with carnosine, β-alanine, l-alanine, l-histidine and the dipeptide l-alanine-l-histidine. The experiments identified a strong induction of expression of the gene encoding pyruvate dehydrogenase 4 (PDK4) under the influence of carnosine and l-histidine, but not by the other substances employed. In addition, inhibition of cell viability was only detected in cells treated with carnosine and l-histidine, with the latter showing a significantly stronger effect than carnosine. Since the tumor cells expressed the tissue form of carnosinase (CN2) but almost no serum carnosinase (CN1), we conclude that cleavage by CN2 is a prerequisite for the antineoplastic effect of carnosine. In addition, enhanced expression of PDK4 under the influence of carnosine/l-histidine opens a new perspective for the interpretation of the ergogenic potential of dietary β-alanine supplementation and adds a new contribution to a growing body of evidence that single amino acids can regulate key metabolic pathways important in health and disease.


Assay and Drug Development Technologies | 2013

Dual Luciferase Assay for Secreted Luciferases Based on Gaussia and NanoLuc

Kerstin Heise; Henry Oppermann; Jürgen Meixensberger; Rolf Gebhardt; Frank Gaunitz

Just recently, NanoLuc, a new engineered luciferase based on the small subunit of the luciferase from Oplophorus gracilirostris was introduced. Like the luciferase from Gaussia princeps, this luciferase is secreted into the medium. Both luciferases are the smallest and brightest luciferases known and well-suited for reporter assays. In our experiments, we demonstrate that both luciferases can be used together in a dual-reporter assay by solving the problem that NanoLuc produces a significant signal with coelenterazine, which is the substrate for Gaussia luciferase. We found that the background signal from NanoLuc with coelenterazine can be calculated from the determination of NanoLuc activity in the presence of its substrate furimazine. This in turn allows the precise determination of the activity of Gaussia which does not produce light in the presence of furimazine. Based on this observation, we developed a high sensitive dual secreted luciferase assay which allows the determination of both activities in a single cotransfection experiment. We demonstrate the versatility and robustness of the assay for the normalization of reporter gene activities. Since Gaussia luciferase and NanoLuc are nonhomologous reporters, the method to determine both luciferase activities may also be useful for coincidence reporter gene systems for high-throughput screening.


Oncotarget | 2015

Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells

Victoria I. Bunik; Artem Artiukhov; Alexey V. Kazantsev; Renata L.S. Goncalves; Danilo M. Daloso; Henry Oppermann; Elena Kulakovskaya; N. V. Lukashev; Alisdair R. Fernie; Martin D. Brand; Frank Gaunitz

The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition.


Cells | 2015

Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays.

Vasily Aleshin; Artem Artiukhov; Henry Oppermann; Alexey V. Kazantsev; N. V. Lukashev; Victoria I. Bunik

Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.


BMC Cancer | 2017

Analysis of cellular and molecular antitumor effects upon inhibition of SATB1 in glioblastoma cells

Anja Frömberg; Michael Rabe; Henry Oppermann; Frank Gaunitz; Achim Aigner

BackgroundThe Special AT-rich Sequence Binding Protein 1 (SATB1) regulates the expression of many genes by acting as a global chromatin organizer. While in many tumor entities SATB1 overexpression has been observed and connected to pro-tumorigenic processes, somewhat contradictory evidence exists in brain tumors with regard to SATB1 overexpression in glioblastoma and its association with poorer prognosis and tumor progression. On the functional side, initial data indicate that SATB1 may be involved in several tumor cell-relevant processes.MethodsFor the detailed analysis of the functional relevance and possible therapeutic potential of SATB1 inhibition, we employ transient siRNA-mediated knockdown and comprehensively analyze the cellular and molecular role of SATB1 in glioblastoma.ResultsIn various cell lines with different SATB1 expression levels, a SATB1 gene dose-dependent inhibition of anchorage-dependent and –independent proliferation is observed. This is due to cell cycle-inhibitory and pro-apoptotic effects of SATB1 knockdown. Molecular analyses reveal SATB1 knockdown effects on multiple important (proto-) oncogenes, including Myc, Bcl-2, Pim-1, EGFR, β-catenin and Survivin. Molecules involved in cell cycle, EMT and cell adhesion are affected as well. The putative therapeutic relevance of SATB1 inhibition is further supported in an in vivo tumor xenograft mouse model, where the treatment with polymeric nanoparticles containing SATB1-specific siRNAs exerts antitumor effects.ConclusionOur results demonstrate that SATB1 may represent a promising target molecule in glioblastoma therapy whose inhibition or knockdown affects multiple crucial pathways.


Oncotarget | 2016

Pyruvate attenuates the anti-neoplastic effect of carnosine independently from oxidative phosphorylation

Henry Oppermann; Lutz Schnabel; Jürgen Meixensberger; Frank Gaunitz

Here we analyzed whether the anti-neoplastic effect of carnosine, which inhibits glycolytic ATP production, can be antagonized by ATP production via oxidative phosphorylation fueled by pyruvate. Therefore, glioblastoma cells were cultivated in medium supplemented with glucose, galactose or pyruvate and in the presence or absence of carnosine. CPI-613 was employed to inhibit the entry of pyruvate into the tricarboxylic acid cycle and 2,4-dinitrophenol to inhibit oxidative phosphorylation. Energy metabolism and viability were assessed by cell based assays and histochemistry. ATP in cell lysates and dehydrogenase activity in living cells revealed a strong reduction of viability under the influence of carnosine when cells received glucose or galactose but not in the presence of pyruvate. CPI-613 and 2,4-dinitrophenol reduced viability of cells cultivated in pyruvate, but no effect was seen in the presence of glucose. No effect of carnosine on viability was observed in the presence of glucose and pyruvate even in the presence of 2,4-dinitrophenol or CPI-613. In conclusion, glioblastoma cells produce ATP from pyruvate via the tricarboxylic acid cycle and oxidative phosphorylation in the absence of a glycolytic substrate. In addition, pyruvate attenuates the anti-neoplastic effect of carnosine, even when ATP production via tricarboxylic acid cycle and oxidative phosphorylation is blocked. We also observed an inhibitory effect of carnosine on the tricarboxylic acid cycle and a stimulating effect of 2,4-dinitrophenol on glycolytic ATP production.


Archive | 2015

CHAPTER 20:Carnosine and Cancer

Frank Gaunitz; Henry Oppermann; Alan R. Hipkiss

The naturally occurring dipeptide carnosine (β-alanyl-l-histidine) was discovered more than 100 years ago. Since then, many physiological functions have been ascribed to it but its biological role still remains enigmatic. Among its remarkable features, its potential to inhibit the growth of neoplastic cells has gained increasing attention during the last two decades, and new experimental data have opened a windows for a deeper understanding on the physiological mechanisms responsible for carnosines antiproliferative potential in cancer cells. In this chapter we will discuss recent data on the antitumor activity of carnosine on the background of other investigations of its physiological role. The possible involvement of signal-transduction pathways and mechanisms of glycolytic control, the control of apoptosis and of cell-cycle regulation are discoursed, and finally, considerations with regard to a therapeutic use of carnosine are discussed.


Nutrition & Metabolism | 2016

Metabolic response of glioblastoma cells associated with glucose withdrawal and pyruvate substitution as revealed by GC-MS

Henry Oppermann; Yonghong Ding; Jeevan Sharma; Mandy Berndt Paetz; Jürgen Meixensberger; Frank Gaunitz; Claudia Birkemeyer

Collaboration


Dive into the Henry Oppermann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge