Hicham Mansour
King Abdullah University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hicham Mansour.
Gut | 2008
Sabine Le Gouvello; Sylvie Bastuji-Garin; Nijez Aloulou; Hicham Mansour; Marie Theres Chaumette; françois Berrehar; Amel Seikour; Antoine Charachon; Mehdi Karoui; Karen Leroy; Jean Pierre Farcet; Iradj Sobhani
Background and aims: Colorectal cancer (CRC) harbours different types of DNA alterations, including microsatellite instability (MSI). Cancers with high levels of MSI (MSI-H) are considered to have a good prognosis, probably related to lymphocyte infiltration within tumours. The aim of the present study was to characterise the intratumoural expression of markers associated with the antitumour immune response in mismatch repair (MMR)-proficient (MSS) colon cancers. Methods: Ninety human colon cancers (T) and autologous normal colon mucosa (NT) were quantified for the expression of 15 markers of the immune response with quantitiative reverse transcription-PCR (qRT-PCR). mRNA expression levels were correlated with MMR status. Immunohistochemistry (IHC) was performed using both interleukin 17 (IL17) and CD3 antibodies. Results: Expression of cytotoxic markers (FasL, granzyme B and perforin), inflammatory cytokines (IL1β, IL6, IL8, IL17 and transforming growth factor β (TGFβ)) and a marker of regulatory T cells (forkhead box P3 (Foxp3)) was significantly higher in tumours than in autologous normal tissues. Adjusting for MMR status, higher tumoural expression of both granzyme B and perforin was associated with the MSI-H phenotype, and the perforin T/NT ratio was higher in MSI-H tissues than in MSS tissues. Higher tumoural expression of Foxp3, IL17, IL1β, IL6 and TGFβ was associated with the MSS phenotype, and the IL17 T/NT ratio was higher in MSS tissues than in MSI-H tissues as assessed by both qRT-PCR and IHC. Conclusions: Immune gene expression profiling in CRC displayed different patterns according to MMR status. Higher Foxp3, IL6, TGFβ and IL17 expression is a particular determinant in MMR-proficient CRC. These may be potential biomarkers for a new prognostic “test set” in sporadic CRCs.
Plant Molecular Biology | 2012
Magdy M. Mahfouz; Lixin Li; Marek J. Piatek; Xiaoyun Fang; Hicham Mansour; Dhinoth K. Bangarusamy; Jian-Kang Zhu
Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional activators in mammalian cells and plants. Here we report the use of TALEs to generate chimeric sequence-specific transcriptional repressors. The dHax3 TALE was used as a scaffold to provide a DNA-binding module fused to the EAR-repression domain (SRDX) to generate a chimeric repressor that targets the RD29A promoter. The dHax3.SRDX protein efficiently repressed the transcription of the RD29A::LUC transgene and endogenous RD29A gene in Arabidopsis. Genome wide expression profiling showed that the chimeric repressor also inhibited the expression of several other genes that contain the designer TALE-target sequence in their promoters. Our data suggest that TALEs can be used to generate chimeric repressors to specifically repress the transcription of genes of interest in plants. This sequence-specific transcriptional repression by direct on promoter effector technology is a powerful tool for functional genomics studies and biotechnological applications.
BMC Cancer | 2013
Jean Pierre Roperch; Roberto Incitti; Solène Forbin; Floriane Bard; Hicham Mansour; Farida Mesli; Isabelle Baumgaertner; Francesco Brunetti; Iradj Sobhani
BackgroundDNA methylation is a well-known epigenetic mechanism involved in epigenetic gene regulation. Several genes were reported hypermethylated in CRC, althought no gene marker was proven to be individually of sufficient sensitivity or specificity in routine clinical practice. Here, we identified novel epigenetic markers and assessed their combined use for diagnostic accuracy.MethodsWe used methylation arrays on samples from several effluents to characterize methylation profiles in CRC samples and controls, as established by colonoscopy and pathology findings, and selected two differentially methylated candidate epigenetic genes (NPY, PENK). To this gene panel we added WIF, on the basis of being reported in literature as silenced by promoter hypermethylation in several cancers, including CRC. We measured their methylation degrees by quantitative multiplex-methylation specific PCR (QM-MSP) on 15 paired carcinomas and adjacent non-cancerous colorectal tissues and we subsequently performed a clinical validation on two different series of 266 serums, subdivided in 32 CRC, 26 polyps, 47 other cancers and 161 with normal colonoscopy. We assessed the results by receiver operating characteristic curve (ROC), using cumulative methylation index (CMI) as variable threshold.ResultsWe obtained CRC detection on tissues with both sensitivity and specificity of 100%. On serum CRC samples, we obtained sensitivity/specificity values of, e.g., 87%/80%, 78%/90% and 59%/95%, and negative predictive value/positive predictive value figures of 97%/47%, 95%/61% and 92%/70%. On serum samples from other cancers we obtained sensitivity/specificity of, e.g, 89%/25%, 43%/80% and 28%/91%.ConclusionsWe showed the potential of NPY, PENK, and WIF1 as combined epigenetic markers for CRC diagnosis, both in tissue and serum and tested their use as serum biomarkers in other cancers. We optimized a QM-MSP for simultaneously quantifying their methylation levels. Our assay can be an effective blood test for patients where CRC risk is present but difficult to assess (e.g. mild symptoms with no CRC family history) and who would therefore not necessarily choose to go for further examination. This panel of markers, if validated, can also be a cost effective screening tool for the detection of asymptomatic cancer patients for colonoscopy.
Marine Genomics | 2012
Giacomo Bernardi; Edward O. Wiley; Hicham Mansour; Michael R. Miller; Guillermo Ortí; David Haussler; Stephen J. O'Brien; Oliver A. Ryder; Byrappa Venkatesh
The Genome 10K project aims to sequence the genomes of 10,000 vertebrates, representing approximately one genome for each vertebrate genus. Since fishes (cartilaginous fishes, ray-finned fishes and lobe-finned fishes) represent more than 50% of extant vertebrates, it is planned to target 4,000 fish genomes. At present, nearly 60 fish genomes are being sequenced at various public funded labs, and under a Genome 10K and BGI pilot project. An additional 100 fishes have been identified for sequencing in the next phase of Genome 10K project.
Ecology and Evolution | 2014
Hugo B. Harrison; Kevin A. Feldheim; Geoffrey P. Jones; Kayan Ma; Hicham Mansour; Sadhasivam Perumal; David H. Williamson; Michael L. Berumen
Microsatellites are often considered ideal markers to investigate ecological processes in animal populations. They are regularly used as genetic barcodes to identify species, individuals, and infer familial relationships. However, such applications are highly sensitive the number and diversity of microsatellite markers, which are also prone to error. Here, we propose a novel framework to assess the suitability of microsatellite datasets for parentage analysis and species discrimination in two closely related species of coral reef fish, Plectropomus leopardus and P. maculatus (Serranidae). Coral trout are important fisheries species throughout the Indo-Pacific region and have been shown to hybridize in parts of the Great Barrier Reef, Australia. We first describe the development of 25 microsatellite loci and their integration to three multiplex PCRs that co-amplify in both species. Using simulations, we demonstrate that the complete suite of markers provides appropriate power to discriminate between species, detect hybrid individuals, and resolve parent–offspring relationships in natural populations, with over 99.6% accuracy in parent–offspring assignments. The markers were also tested on seven additional species within the Plectropomus genus with polymorphism in 28–96% of loci. The multiplex PCRs developed here provide a reliable and cost-effective strategy to investigate evolutionary and ecological dynamics and will be broadly applicable in studies of wild populations and aquaculture brood stocks for these closely related fish species.
PLOS ONE | 2014
A Amiot; Hicham Mansour; Isabelle Baumgaertner; Jean-Charles Delchier; Christophe Tournigand; Jean-Pierre Furet; Jean-Pierre Carrau; Florence Canoui-Poitrine; Iradj Sobhani
Background The clinical benefit of guaiac fecal occult blood tests (FOBT) is now well established for colorectal cancer screening. Growing evidence has demonstrated that epigenetic modifications and fecal microbiota changes, also known as dysbiosis, are associated with CRC pathogenesis and might be used as surrogate markers of CRC. Patients and Methods We performed a cross-sectional study that included all consecutive subjects that were referred (from 2003 to 2007) for screening colonoscopies. Prior to colonoscopy, effluents (fresh stools, sera-S and urine-U) were harvested and FOBTs performed. Methylation levels were measured in stools, S and U for 3 genes (Wif1, ALX-4, and Vimentin) selected from a panel of 63 genes; Kras mutations and seven dominant and subdominant bacterial populations in stools were quantified. Calibration was assessed with the Hosmer-Lemeshow chi-square, and discrimination was determined by calculating the C-statistic (Area Under Curve) and Net Reclassification Improvement index. Results There were 247 individuals (mean age 60.8±12.4 years, 52% of males) in the study group, and 90 (36%) of these individuals were patients with advanced polyps or invasive adenocarcinomas. A multivariate model adjusted for age and FOBT led to a C-statistic of 0.83 [0.77–0.88]. After supplementary sequential (one-by-one) adjustment, Wif-1 methylation (S or U) and fecal microbiota dysbiosis led to increases of the C-statistic to 0.90 [0.84–0.94] (p = 0.02) and 0.81 [0.74–0.86] (p = 0.49), respectively. When adjusted jointly for FOBT and Wif-1 methylation or fecal microbiota dysbiosis, the increase of the C-statistic was even more significant (0.91 and 0.85, p<0.001 and p = 0.10, respectively). Conclusion The detection of methylated Wif-1 in either S or U has a higher performance accuracy compared to guaiac FOBT for advanced colorectal neoplasia screening. Conversely, fecal microbiota dysbiosis detection was not more accurate. Blood and urine testing could be used in those individuals reluctant to undergo stool testing.
Transplantation | 2011
David Buob; Marc Hazan; Sébastien Homs; Marie Matignon; Hicham Mansour; Vincent Audard; Dominique Desvaux; Philippe Remy; Christian Noel; Sylvie Bastuji-Garin; José L. Cohen; Philippe Lang; Philippe Grimbert
Background. Transplant glomerulitis, characterized by mononuclear cell infiltration of glomeruli, is likely to occur during clinical or subclinical antibody-mediated rejection. Methods. To determine whether T-cell phenotype influences the clinical presentation of this pathologic condition, we used reverse transcription quantitative polymerase chain reaction to analyze expression of Treg cells (Foxp3), cytotoxic CD8 T cells (Granzyme B), Th1 cells (INF-&ggr;,T Bet), Th2 cells (GATA3, IL-4), and Th17 pathway (IL-17). Our study included 20 renal transplant recipients exhibiting subclinical glomerulitis (SG) diagnosed after a routine 3-month posttransplant biopsy. Results were compared with those observed in 22 patients with normal routine biopsies at 3 months (N) and 17 patients with clinical glomerulitis occurring during early acute renal dysfunction within the first year after transplantation in a context of acute antibody-mediated rejection. Results. Our results show that expression of IL-4 mRNA was significantly higher in SG patients than in N patients (P=0.02). Expression of IFN-&ggr; was significantly higher in patients with clinical glomerulitis than in patients with SG (P<0.001) and was associated with a clinical expression of glomerulitis. Conclusion. Our results suggest that the balance of Th1/Th2 is likely to differentiate clinical expression of transplant glomerulopathy. They also indicate that therapeutic approaches in cases of SG should be defined with caution and take into account transcriptional criteria.
PLOS ONE | 2013
Arwa Bin Raies; Hicham Mansour; Roberto Incitti; Vladimir B. Bajic
Background In a number of diseases, certain genes are reported to be strongly methylated and thus can serve as diagnostic markers in many cases. Scientific literature in digital form is an important source of information about methylated genes implicated in particular diseases. The large volume of the electronic text makes it difficult and impractical to search for this information manually. Methodology We developed a novel text mining methodology based on a new concept of position weight matrices (PWMs) for text representation and feature generation. We applied PWMs in conjunction with the document-term matrix to extract with high accuracy associations between methylated genes and diseases from free text. The performance results are based on large manually-classified data. Additionally, we developed a web-tool, DEMGD, which automates extraction of these associations from free text. DEMGD presents the extracted associations in summary tables and full reports in addition to evidence tagging of text with respect to genes, diseases and methylation words. The methodology we developed in this study can be applied to similar association extraction problems from free text. Conclusion The new methodology developed in this study allows for efficient identification of associations between concepts. Our method applied to methylated genes in different diseases is implemented as a Web-tool, DEMGD, which is freely available at http://www.cbrc.kaust.edu.sa/demgd/. The data is available for online browsing and download.
Nucleic Acids Research | 2015
Arwa Bin Raies; Hicham Mansour; Roberto Incitti; Vladimir B. Bajic
Gathering information about associations between methylated genes and diseases is important for diseases diagnosis and treatment decisions. Recent advancements in epigenetics research allow for large-scale discoveries of associations of genes methylated in diseases in different species. Searching manually for such information is not easy, as it is scattered across a large number of electronic publications and repositories. Therefore, we developed DDMGD database (http://www.cbrc.kaust.edu.sa/ddmgd/) to provide a comprehensive repository of information related to genes methylated in diseases that can be found through text mining. DDMGDs scope is not limited to a particular group of genes, diseases or species. Using the text mining system DEMGD we developed earlier and additional post-processing, we extracted associations of genes methylated in different diseases from PubMed Central articles and PubMed abstracts. The accuracy of extracted associations is 82% as estimated on 2500 hand-curated entries. DDMGD provides a user-friendly interface facilitating retrieval of these associations ranked according to confidence scores. Submission of new associations to DDMGD is provided. A comparison analysis of DDMGD with several other databases focused on genes methylated in diseases shows that DDMGD is comprehensive and includes most of the recent information on genes methylated in diseases.
Marine Biodiversity | 2016
Mary C. Bonin; Pablo Saenz-Agudelo; Hugo B. Harrison; Gerrit B. Nanninga; Martin H. van der Meer; Hicham Mansour; Sadhavisan Perumal; Geoffrey P. Jones; Michael L. Berumen
Anemonefish are iconic symbols of coral reefs and have become model systems for research on larval dispersal and population connectivity in coral reef fishes. Here we present 24 novel microsatellite markers across four species of anemonefish and also test 35 previously published markers for cross-amplification on two anemonefish species in order to facilitate further research on their population genetics and phylogenetics. Novel loci were isolated from sequences derived from microsatellite-enriched or 454 GS-FLX shotgun sequence libraries developed using congeneric DNA. Primer testing successfully identified 15 new microsatellite loci for A. percula, 4 for A. melanopus, 3 for A. akindynos, and 2 for A. omanensis. These novel microsatellite loci were polymorphic with a mean of 10 ± 1.6 SE (standard error) alleles per locus and an average observed heterozygosity of 0.647 ± 0.032 SE. Reliable cross-amplification of 12 and 26 of the 35 previously published Amphiprion markers was achieved for A. melanopus and A. akindynos, respectively, suggesting that the use of markers developed from the DNA of congeners can provide a quick and cost-effective alternative to the isolation of new loci. Together, the markers presented here provide an important resource for ecological, evolutionary, and conservation genetic research on anemonefishes that will inform broader conservation and management actions for coral reef fishes.