Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ko Hirano is active.

Publication


Featured researches published by Ko Hirano.


The Plant Cell | 2007

The GID1-Mediated Gibberellin Perception Mechanism Is Conserved in the Lycophyte Selaginella moellendorffii but Not in the Bryophyte Physcomitrella patens

Ko Hirano; Masatoshi Nakajima; Kenji Asano; Tomoaki Nishiyama; Hitoshi Sakakibara; Mikiko Kojima; Etsuko Katoh; Hongyu Xiang; Takako Tanahashi; Mitsuyasu Hasebe; Jo Ann Banks; Motoyuki Ashikari; Hidemi Kitano; Miyako Ueguchi-Tanaka; Makoto Matsuoka

In rice (Oryza sativa) and Arabidopsis thaliana, gibberellin (GA) signaling is mediated by GIBBERELLIN-INSENSITIVE DWARF1 (GID1) and DELLA proteins in collaboration with a GA-specific F-box protein. To explore when plants evolved the ability to perceive GA by the GID1/DELLA pathway, we examined these GA signaling components in the lycophyte Selaginella moellendorffii and the bryophyte Physcomitrella patens. An in silico search identified several homologs of GID1, DELLA, and GID2, a GA-specific F-box protein in rice, in both species. Sm GID1a and Sm GID1b, GID1 proteins from S. moellendorffii, showed GA binding activity in vitro and interacted with DELLA proteins from S. moellendorffii in a GA-dependent manner in yeast. Introduction of constitutively expressed Sm GID1a, Sm G1D1b, and Sm GID2a transgenes rescued the dwarf phenotype of rice gid1 and gid2 mutants. Furthermore, treatment with GA4, a major GA in S. moellendorffii, caused downregulation of Sm GID1b, Sm GA20 oxidase, and Sm GA3 oxidase and degradation of the Sm DELLA1 protein. These results demonstrate that the homologs of GID1, DELLA, and GID2 work in a similar manner in S. moellendorffii and in flowering plants. Biochemical studies revealed that Sm GID1s have different GA binding properties from GID1s in flowering plants. No evidence was found for the functional conservation of these genes in P. patens, indicating that GID1/DELLA-mediated GA signaling, if present, differs from that in vascular plants. Our results suggest that GID1/DELLA-mediated GA signaling appeared after the divergence of vascular plants from the moss lineage.


Plant and Cell Physiology | 2008

Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice

Ko Hirano; Koichiro Aya; Tokunori Hobo; Hitoshi Sakakibara; Mikiko Kojima; Rosalyn Angeles Shim; Yasuko Hasegawa; Miyako Ueguchi-Tanaka; Makoto Matsuoka

To investigate the involvement of phytohormones during rice microspore/pollen (MS/POL) development, endogenous levels of IAA, gibberellins (GAs), cytokinins (CKs) and abscisic acid (ABA) in the mature anther were analyzed. We also analyzed the global expression profiles of genes related to seven phytohormones, namely auxin, GAs, CKs, brassinosteroids, ethylene, ABA and jasmonic acids, in MS/POL and tapetum (TAP) using a 44K microarray combined with a laser microdissection technique (LM-array analysis). IAA and GA4 accumulated in a much higher amount in the mature anther compared with the other tissues, while CKs and ABA did not. LM-array analysis revealed that sets of genes required for IAA and GA synthesis were coordinately expressed during the later stages of MS/POL development, suggesting that these genes are responsible for the massive accumulation of IAA and GA4 in the mature anther. In contrast, genes for GA signaling were preferentially expressed during the early developmental stages of MS/POL and throughout TAP development, while their expression was down-regulated at the later stages of MS/POL development. In the case of auxin signaling genes, such mirror-imaged expression observed in GA synthesis and signaling genes was not observed. IAA receptor genes were mostly expressed during the late stages of MS/POL development, and various sets of AUX/IAA and ARF genes were expressed during the different stages of MS/POL or TAP development. Such cell type-specific expression profiles of phytohormone biosynthesis and signaling genes demonstrate the validity and importance of analyzing the expression of phytohormone-related genes in individual cell types independently of other cells/tissues.


Trends in Plant Science | 2008

GID1-mediated gibberellin signaling in plants.

Ko Hirano; Miyako Ueguchi-Tanaka; Makoto Matsuoka

Gibberellin (GA) perception is mediated by GID1 (GA-INSENSITIVE DWARF1), a receptor that shows similarity to hormone-sensitive lipases. A key event in GA signaling is the degradation of DELLA proteins, which are negative regulators of GA response that interact with GID1 in a GA-dependent manner. This GID1-DELLA GA-perception system is conserved among vascular plants but is not found in the moss Physcomitrella patens. The identification of factors in GA signaling downstream of DELLA and the development of a new concept of DELLA function beyond its role as a repressor of GA signaling are important advances. DELLA proteins appear to have at least two other distinct roles: maintaining GA homeostasis and regulating cross-talk between GA and other plant hormones.


The Plant Cell | 2010

Characterization of the Molecular Mechanism Underlying Gibberellin Perception Complex Formation in Rice

Ko Hirano; Kenji Asano; Hiroyuki Tsuji; Mayuko Kawamura; Hitoshi Mori; Hidemi Kitano; Miyako Ueguchi-Tanaka; Makoto Matsuoka

DELLA degradation, a key event in gibberellin (GA) signaling, is triggered by the GA-dependent interaction between the GA receptor GID1 and the DELLA/TVHYNP motif of DELLA. The interaction between GID1 and the DELLA/TVHYNP motif is found to enable the C-terminal GRAS domain of DELLA to interact with GID1, which leads to the degradation of the DELLA protein SLR1 via the SCFGID2 E3 ligase. The DELLA protein SLENDER RICE1 (SLR1) is a repressor of gibberellin (GA) signaling in rice (Oryza sativa), and most of the GA-associated responses are induced upon SLR1 degradation. It is assumed that interaction between GIBBERELLIN INSENSITIVE DWARF1 (GID1) and the N-terminal DELLA/TVHYNP motif of SLR1 triggers F-box protein GID2-mediated SLR1 degradation. We identified a semidominant dwarf mutant, Slr1-d4, which contains a mutation in the region encoding the C-terminal GRAS domain of SLR1 (SLR1G576V). The GA-dependent degradation of SLR1G576V was reduced in Slr1-d4, and compared with SLR1, SLR1G576V showed reduced interaction with GID1 and almost none with GID2 when tested in yeast cells. Surface plasmon resonance of GID1-SLR1 and GID1-SLR1G576V interactions revealed that the GRAS domain of SLR1 functions to stabilize the GID1-SLR1 interaction by reducing its dissociation rate and that the G576V substitution in SLR1 diminishes this stability. These results suggest that the stable interaction of GID1-SLR1 through the GRAS domain is essential for the recognition of SLR1 by GID2. We propose that when the DELLA/TVHYNP motif of SLR1 binds with GID1, it enables the GRAS domain of SLR1 to interact with GID1 and that the stable GID1-SLR1 complex is efficiently recognized by GID2.


Nature Genetics | 2016

Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice

Kenji Yano; Eiji Yamamoto; Koichiro Aya; Hideyuki Takeuchi; Pei-ching Lo; Li Hu; Masanori Yamasaki; Shinya Yoshida; Hidemi Kitano; Ko Hirano; Makoto Matsuoka

A genome-wide association study (GWAS) can be a powerful tool for the identification of genes associated with agronomic traits in crop species, but it is often hindered by population structure and the large extent of linkage disequilibrium. In this study, we identified agronomically important genes in rice using GWAS based on whole-genome sequencing, followed by the screening of candidate genes based on the estimated effect of nucleotide polymorphisms. Using this approach, we identified four new genes associated with agronomic traits. Some genes were undetectable by standard SNP analysis, but we detected them using gene-based association analysis. This study provides fundamental insights relevant to the rapid identification of genes associated with agronomic traits using GWAS and will accelerate future efforts aimed at crop improvement.


Proceedings of the National Academy of Sciences of the United States of America | 2014

DELLA protein functions as a transcriptional activator through the DNA binding of the INDETERMINATE DOMAIN family proteins

Hideki Yoshida; Ko Hirano; Tomomi Sato; Nobutaka Mitsuda; Mika Nomoto; Kenichiro Maeo; Eriko Koketsu; Rie Mitani; Mayuko Kawamura; Sumie Ishiguro; Yasuomi Tada; Masaru Ohme-Takagi; Makoto Matsuoka; Miyako Ueguchi-Tanaka

Significance Gibberellin (GA)-dependent degradation of DELLA protein, a key negative regulator, is essential for GA action. However, it is unclear how DELLA regulates downstream gene expression. Although possessing strong transactivation activity, DELLA lacks a DNA-binding domain. Therefore, a model has been proposed in which DELLA acts as a transcriptional coactivator with another transcription factor or factors containing a DNA-binding domain. Here, we show that some members of the INDETERMINATE DOMAIN (IDD) protein family are such intermediate proteins. The DELLA/IDD complex up-regulates the expression of the GA-positive regulator SCARECROW-LIKE 3 (SCL3). Meanwhile, SCL3 protein also interacts with IDD proteins to suppress its own expression. We propose that a coregulator exchange system between DELLA (as coactivator) and SCL3 (as corepressor) regulates the expression of SCL3. DELLA protein is a key negative regulator of gibberellin (GA) signaling. Although how DELLA regulates downstream gene expression remains unclear, DELLA has been proposed to function as a transcriptional activator. However, because DELLA lacks a DNA-binding domain, intermediate protein(s) mediating the DELLA/DNA interaction are believed to be necessary for activating DELLA target genes. Here, using yeast hybrid screenings, we identified five members of INDETERMINATE DOMAIN (IDD) protein family which bind physically to both DELLA and the promoter sequence of the GA-positive regulator SCARECROW-LIKE 3 (SCL3), which previously was characterized as a DELLA direct target gene. Transient assays using Arabidopsis protoplasts demonstrated that a luciferase reporter controlled by the SCL3 promoter was additively transactivated by REPRESSOR of ga1-3 (RGA) and IDDs. Phenotypic analysis of transgenic plants expressing AtIDD3 (one of the 16 IDDs in the Arabidopsis genome) fused with the plant-specific repression domain (SRDX) supported the possibility that AtIDD3 is positively involved in GA signaling. In addition, we found that SCL3 protein also interacts with IDDs, resulting in the suppression of its target gene expression. In this context, DELLA and SCL3 interact competitively with IDD proteins to regulate downstream gene expression. These results suggest that the coregulators DELLA and SCL3, using IDDs as transcriptional scaffolds for DNA binding, antagonistically regulate the expression of their downstream targets to control the GA signaling pathway.


The Plant Cell | 2008

Release of the Repressive Activity of Rice DELLA Protein SLR1 by Gibberellin Does Not Require SLR1 Degradation in the gid2 Mutant

Miyako Ueguchi-Tanaka; Ko Hirano; Yasuko Hasegawa; Hidemi Kitano; Makoto Matsuoka

The rice (Oryza sativa) DELLA protein SLR1 acts as a repressor of gibberellin (GA) signaling. GA perception by GID1 causes SLR1 protein degradation involving the F-box protein GID2; this triggers GA-associated responses such as shoot elongation and seed germination. In GA-insensitive and GA biosynthesis mutants, SLENDER RICE1 (SLR1) accumulates to high levels, and the severity of dwarfism is usually correlated with the level of SLR1 accumulation. An exception is the GA-insensitive F-box mutant gid2, which shows milder dwarfism than mutants such as gid1 and cps even though it accumulates higher levels of SLR1. The level of SLR1 protein in gid2 was decreased by loss of GID1 function or treatment with a GA biosynthesis inhibitor, and dwarfism was enhanced. Conversely, overproduction of GID1 or treatment with GA3 increased the SLR1 level in gid2 and reduced dwarfism. These results indicate that derepression of SLR1 repressive activity can be accomplished by GA and GID1 alone and does not require F-box (GID2) function. Evidence for GA signaling without GID2 was also provided by the expression behavior of GA-regulated genes such as GA-20oxidase1, GID1, and SLR1 in the gid2 mutant. Based on these observations, we propose a model for the release of GA suppression that does not require DELLA protein degradation.


Molecular Genetics and Genomics | 2009

Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice.

Kenji Asano; Ko Hirano; Miyako Ueguchi-Tanaka; Rosalyn B. Angeles-Shim; Toshiro Komura; Hikaru Satoh; Hidemi Kitano; Makoto Matsuoka; Motoyuki Ashikari

Abstractsd1 is known as the ‘green revolution’ gene in rice because its application in rice breeding has dramatically increased rice yield. Since the ‘green revolution,’ sd1 has been extensively used to produce modern semi-dwarf varieties. The extensive use of limited dwarfing sources may, however, cause a bottleneck effect in the genetic background of rice varieties. To circumvent this problem, novel and useful sources of dwarf genes must be identified. In this study, we identified three semi-dominant dwarf mutants. These mutants were categorized as dn-type dwarf mutants according to the elongation pattern of internodes. Gibberellin (GA) response tests showed that the mutants were still responsive to GA, although at a reduced rate. Map-based cloning revealed that the dwarf phenotype in these mutants was caused by gain-of-function mutations in the N-terminal region of SLR1. Degradation of the SLR1 protein in these mutants occurred later than in the wild type. Reduced interaction abilities of the SLR1 protein in these mutants with GID1 were also observed using the yeast two-hybrid system. Crossing experiments indicated that with the use of an appropriate genetic background, the semi-dominant dwarf alleles identified in this study could be used to alleviate the deficiency of dwarfing genes for breeding applications.


Plant Journal | 2012

The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity

Ko Hirano; Eriko Kouketu; Hiroe Katoh; Koichiro Aya; Miyako Ueguchi-Tanaka; Makoto Matsuoka

When the gibberellin (GA) receptor GIBBERELLIN INSENSITIVE DWARF 1 (GID1) binds to GA, GID1 interacts with DELLA proteins, repressors of GA signaling. This interaction inhibits the suppressive function of DELLA protein and thereby activates the GA response. However, how DELLA proteins exert their suppressive function and how GID1s inhibit suppressive function of DELLA proteins is unclear. By yeast one-hybrid experiments and transient expression of the N-terminal region of rice DELLA protein (SLR1) in rice callus, we established that the N-terminal DELLA/TVHYNP motif of SLR1 possesses transactivation activity. When SLR1 proteins with various deletions were over-expressed in rice, the severity of dwarfism correlated with the transactivation activity observed in yeast, indicating that SLR1 suppresses plant growth through transactivation activity. This activity was suppressed by the GA-dependent GID1-SLR1 interaction, which may explain why GA responses are induced in the presence of GA. The C-terminal GRAS domain of SLR1 also exhibits a suppressive function on plant growth, possibly by directly or indirectly interacting with the promoter region of target genes. Our results indicate that the N-terminal region of SLR1 has two roles in GA signaling: interaction with GID1 and transactivation activity.


Journal of Experimental Botany | 2011

Rice Brittle culm 6 encodes a dominant-negative form of CesA protein that perturbs cellulose synthesis in secondary cell walls

Toshihisa Kotake; Tsutomu Aohara; Ko Hirano; Ami Sato; Yasuko Kaneko; Yoichi Tsumuraya; Hiroshi Takatsuji; Shinji Kawasaki

The brittle culm (bc) mutants of Gramineae plants having brittle skeletal structures are valuable materials for studying secondary cell walls. In contrast to other recessive bc mutants, rice Bc6 is a semi-dominant bc mutant with easily breakable plant bodies. In this study, the Bc6 gene was cloned by positional cloning. Bc6 encodes a cellulose synthase catalytic subunit, OsCesA9, and has a missense mutation in its highly conserved region. In culms of the Bc6 mutant, the proportion of cellulose was reduced by 38%, while that of hemicellulose was increased by 34%. Introduction of the semi-dominant Bc6 mutant gene into wild-type rice significantly reduced the percentage of cellulose, causing brittle phenotypes. Transmission electron microscopy analysis revealed that Bc6 mutation reduced the cell wall thickness of sclerenchymal cells in culms. In rice expressing a reporter construct, BC6 promoter activity was detected in the culms, nodes, and flowers, and was localized primarily in xylem tissues. This expression pattern was highly similar to that of BC1, which encodes a COBRA-like protein involved in cellulose synthesis in secondary cell walls in rice. These results indicate that BC6 is a secondary cell wall-specific CesA that plays an important role in proper deposition of cellulose in the secondary cell walls.

Collaboration


Dive into the Ko Hirano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge