Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidetaka Kosako is active.

Publication


Featured researches published by Hidetaka Kosako.


Nature | 2014

Ubiquitin is phosphorylated by PINK1 to activate parkin

Fumika Koyano; Kei Okatsu; Hidetaka Kosako; Yasushi Tamura; Etsu Go; Mayumi Kimura; Yoko Kimura; Hikaru Tsuchiya; Hidehito Yoshihara; Takatsugu Hirokawa; Toshiya Endo; Edward A. Fon; Jean-François Trempe; Yasushi Saeki; Keiji Tanaka; Noriyuki Matsuda

PINK1 (PTEN induced putative kinase 1) and PARKIN (also known as PARK2) have been identified as the causal genes responsible for hereditary recessive early-onset Parkinsonism. PINK1 is a Ser/Thr kinase that specifically accumulates on depolarized mitochondria, whereas parkin is an E3 ubiquitin ligase that catalyses ubiquitin transfer to mitochondrial substrates. PINK1 acts as an upstream factor for parkin and is essential both for the activation of latent E3 parkin activity and for recruiting parkin onto depolarized mitochondria. Recently, mechanistic insights into mitochondrial quality control mediated by PINK1 and parkin have been revealed, and PINK1-dependent phosphorylation of parkin has been reported. However, the requirement of PINK1 for parkin activation was not bypassed by phosphomimetic parkin mutation, and how PINK1 accelerates the E3 activity of parkin on damaged mitochondria is still obscure. Here we report that ubiquitin is the genuine substrate of PINK1. PINK1 phosphorylated ubiquitin at Ser 65 both in vitro and in cells, and a Ser 65 phosphopeptide derived from endogenous ubiquitin was only detected in cells in the presence of PINK1 and following a decrease in mitochondrial membrane potential. Unexpectedly, phosphomimetic ubiquitin bypassed PINK1-dependent activation of a phosphomimetic parkin mutant in cells. Furthermore, phosphomimetic ubiquitin accelerates discharge of the thioester conjugate formed by UBCH7 (also known as UBE2L3) and ubiquitin (UBCH7∼ubiquitin) in the presence of parkin in vitro, indicating that it acts allosterically. The phosphorylation-dependent interaction between ubiquitin and parkin suggests that phosphorylated ubiquitin unlocks autoinhibition of the catalytic cysteine. Our results show that PINK1-dependent phosphorylation of both parkin and ubiquitin is sufficient for full activation of parkin E3 activity. These findings demonstrate that phosphorylated ubiquitin is a parkin activator.


Neuron | 2001

Combinatorial Roles of Olig2 and Neurogenin2 in the Coordinated Induction of Pan-Neuronal and Subtype-Specific Properties of Motoneurons

Rumiko Mizuguchi; Michiya Sugimori; Hirohide Takebayashi; Hidetaka Kosako; Motoshi Nagao; Shosei Yoshida; Yo-ichi Nabeshima; Kenji Shimamura; Masato Nakafuku

Distinct classes of neurons are generated at defined times and positions during development of the nervous system. It remains elusive how specification of neuronal identity coordinates with acquisition of pan-neuronal properties. Here we show that basic helix-loop-helix (bHLH) transcription factors Olig2 and Neurogenin2 (Ngn2) play vital roles in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Olig2 and Ngn2 are specifically coexpressed in motoneuron progenitors. Misexpression studies in chick demonstrate the specific, combinatorial actions of Olig2 and Ngn2 in motoneuron generation. Our results further revealed crossregulatory interactions between bHLH and homeodomain transcription factors in the specification of motoneurons. We suggest that distinct classes of transcription factors collaborate to generate motoneurons in the ventral neural tube.


Journal of Biological Chemistry | 1999

IDENTIFICATION OF A NOVEL PHOSPHORYLATION SITE ON HISTONE H3 COUPLED WITH MITOTIC CHROMOSOME CONDENSATION

Hidemasa Goto; Yasuko Tomono; Kozo Ajiro; Hidetaka Kosako; Masatoshi Fujita; Minoru Sakurai; Katsuya Okawa; Akihiro Iwamatsu; Tohru Okigaki; Toshitada Takahashi; Masaki Inagaki

Histone H3 (H3) phosphorylation at Ser10 occurs during mitosis in eukaryotes and was recently shown to play an important role in chromosome condensation inTetrahymena. When producing monoclonal antibodies that recognize glial fibrillary acidic protein phosphorylation at Thr7, we obtained some monoclonal antibodies that cross-reacted with early mitotic chromosomes. They reacted with 15-kDa phosphoprotein specifically in mitotic cell lysate. With microsequencing, this phosphoprotein was proved to be H3. Mutational analysis revealed that they recognized H3 Ser28phosphorylation. Then we produced a monoclonal antibody, HTA28, using a phosphopeptide corresponding to phosphorylated H3 Ser28. This antibody specifically recognized the phosphorylation of H3 Ser28 but not that of glial fibrillary acidic protein Thr7. Immunocytochemical studies with HTA28 revealed that Ser28 phosphorylation occurred in chromosomes predominantly during early mitosis and coincided with the initiation of mitotic chromosome condensation. Biochemical analyses using32P-labeled mitotic cells also confirmed that H3 is phosphorylated at Ser28 during early mitosis. In addition, we found that H3 is phosphorylated at Ser28 as well as Ser10 when premature chromosome condensation was induced in tsBN2 cells. These observations suggest that H3 phosphorylation at Ser28, together with Ser10, is a conserved event and is likely to be involved in mitotic chromosome condensation.


Mechanisms of Development | 2000

Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3.

Hirohide Takebayashi; Shosei Yoshida; Michiya Sugimori; Hidetaka Kosako; Ryo Kominami; Masato Nakafuku; Yo-ichi Nabeshima

Basic helix-loop-helix (bHLH) transcription factors have been shown to be essential for specification of various cell types. Here, we describe a novel bHLH family consisting of three members, two of which (Olig1, Olig2) are expressed in a nervous tissue-specific manner, whereas the third, Olig3 is found mainly in non-neural tissues. Olig1 and Olig2, which recently have been implicated in oligodendrogenesis, are expressed in the region of the ventral ventricular zone of late embryonic spinal cord where oligodendrocyte progenitors appear. In the embryonic brain, the Olig2 expression domain is broader than that of Olig1 and does not overlap with an oligodendrocyte progenitor marker, CNP. Furthermore, Olig2 is expressed in most cells in the ventral half of the early embryonic spinal cord, which do not yet express an early neuronal marker TuJ1. These results indicate that Olig2 expression is not limited to the oligodendrocyte lineage but includes immature neuronal progenitors and multipotential neuron/glia progenitors as well as embryonic olfactory neurons.


Nature Communications | 2012

PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria

Kei Okatsu; Toshihiko Oka; Masahiro Iguchi; Kenji Imamura; Hidetaka Kosako; Naoki Tani; Mayumi Kimura; Etsu Go; Fumika Koyano; Manabu Funayama; Kahori Shiba-Fukushima; Shigeto Sato; Hideaki Shimizu; Yuko Fukunaga; Hisaaki Taniguchi; Masaaki Komatsu; Nobutaka Hattori; Katsuyoshi Mihara; Keiji Tanaka; Noriyuki Matsuda

Dysfunction of PINK1, a mitochondrial Ser/Thr kinase, causes familial Parkinsons disease (PD). Recent studies have revealed that PINK1 is rapidly degraded in healthy mitochondria but accumulates on the membrane potential (ΔΨm)-deficient mitochondria, where it recruits another familial PD gene product, Parkin, to ubiquitylate the damaged mitochondria. Despite extensive study, the mechanism underlying the homeostatic control of PINK1 remains unknown. Here we report that PINK1 is autophosphorylated following a decrease in ΔΨm and that most disease-relevant mutations hinder this event. Mass spectrometric and mutational analyses demonstrate that PINK1 autophosphorylation occurs at Ser228 and Ser402, residues that are structurally clustered together. Importantly, Ala mutation of these sites abolishes autophosphorylation of PINK1 and inhibits Parkin recruitment onto depolarized mitochondria, whereas Asp (phosphorylation-mimic) mutation promotes mitochondrial localization of Parkin even though autophosphorylation was still compromised. We propose that autophosphorylation of Ser228 and Ser402 in PINK1 is essential for efficient mitochondrial localization of Parkin.


Oncogene | 2000

Rho-kinase/ROCK is involved in cytokinesis through the phosphorylation of myosin light chain and not ezrin/radixin/moesin proteins at the cleavage furrow.

Hidetaka Kosako; Toshimichi Yoshida; Fumio Matsumura; Toshimasa Ishizaki; Shuh Narumiya; Masaki Inagaki

The small GTPase Rho and one of its targets, Rho-kinase (also termed ROK or ROCK), are implicated in various cellular functions including stress fiber formation, smooth muscle contraction, tumor cell invasion and cell motility. We have previously reported that Rho-kinase accumulates at the cleavage furrow during cytokinesis in several cultured cells. Here, using Rho-kinase inhibitors, Y-27632 and HA1077, we found that Rho-kinase is responsible for the phosphorylation of myosin regulatory light chain at Ser19 in the cleavage furrow during cytokinesis. On the other hand, phosphorylation of ezrin/radixin/moesin (ERM) proteins at the cleavage furrow was enhanced by the addition of the above Rho-kinase inhibitors. Treatment with Y-27632 strongly enhanced the accumulation of Rho-kinase but not RhoA and citron kinase at the cleavage furrow. Furthermore, the furrow ingression in cytokinesis was significantly prolonged in the presence of Y-27632. These results suggest that Rho-kinase is involved in the progression of cytokinesis through the phosphorylation of several proteins including myosin light chain at the cleavage furrow.


The EMBO Journal | 1994

Requirement for the MAP kinase kinase/MAP kinase cascade in Xenopus oocyte maturation.

Hidetaka Kosako; Yukiko Gotoh; Eisuke Nishida

MAP kinase kinase (MAPKK) has been identified as a protein factor that can induce phosphorylation and activation of inactive MAP kinase in vitro. In this study, we produced an anti‐Xenopus MAPKK antibody that can specifically inhibit Xenopus MAPKK activity in vitro. Microinjection of this antibody into immature oocytes prevented progesterone‐induced MAP kinase activation. Moreover, progesterone‐induced histone H1 kinase activation and germinal vesicle breakdown (GVBD) were inhibited in the oocytes injected previously with this antibody. Furthermore, when a bacterially expressed Mos was introduced into immature oocytes, Mos‐induced MAP kinase activation and GVBD were blocked in the oocytes injected with the anti‐MAPKK antibody. These results show that MAPKK is responsible for the activation of MAP kinase in vivo and that the MAPKK/MAP kinase cascade plays a pivotal role in the MPF activation during the oocyte maturation process.


The EMBO Journal | 1992

Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade.

Satoshi Matsuda; Hidetaka Kosako; Katsuya Takenaka; Kenji Moriyama; Hiroshi Sakai; Tetsu Akiyama; Yukiko Gotoh; Eisuke Nishida

MAP kinase is thought to play a pivotal role not only in the growth factor‐stimulated signalling pathway but also in the M phase phosphorylation cascade downstream of MPF. MAP kinase is fully active only when both tyrosine and threonine/serine residues are phosphorylated. We have now identified and purified a Xenopus MAP kinase activator from mature oocytes that is able to induce activation and phosphorylation on tyrosine and threonine/serine residues of an inactive form of Xenopus MAP kinase. The Xenopus MAP kinase activator itself is a 45 kDa phosphoprotein and is inactivated by protein phosphatase 2A treatment in vitro. Microinjection of the purified activator into immature oocytes results in immediate activation of MAP kinase. Further experiments using microinjection as well as cell free extracts have shown that Xenopus MAP kinase activator is an intermediate between MPF and MAP kinase. Thus, MAP kinase activator plays a key role in the phosphorylation cascade.


The EMBO Journal | 1992

Xenopus MAP kinase activator is a serine/threonine/tyrosine kinase activated by threonine phosphorylation.

Hidetaka Kosako; Yukiko Gotoh; Satoshi Matsuda; Ishikawa M; Eisuke Nishida

Xenopus MAP kinase activator, a 45 kDa protein, has been shown to function as a direct upstream factor sufficient for full activation and both tyrosine and serine/threonine phosphorylation of inactive MAP kinase. We have now shown by using an anti‐MAP kinase activator antiserum that MAP kinase activator is ubiquitous in tissues and is regulated post‐translationally. Activation of MAP kinase activator is correlated precisely with its threonine phosphorylation during the oocyte maturation process. It is a key question whether MAP kinase activator is a kinase or not. We have shown that Xenopus MAP kinase activator purified from mature oocytes is capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. Dephosphorylation of purified activator by protein phosphatase 2A treatment inactivates its autophosphorylation activity as well as its activator activity. Thus, Xenopus MAP kinase activator is a protein kinase with specificity for both serine/threonine and tyrosine. Partial protein sequencing of purified activator indicates that it contains a sequence homologous to kinase subdomains VI and VII of two yeast protein kinases, STE7 and byrl.


The EMBO Journal | 1993

cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeasts to vertebrates.

Hidetaka Kosako; Eisuke Nishida; Yukiko Gotoh

A Xenopus 45 kDa protein has been identified as an immediate upstream factor sufficient for full activation of MAP kinase, and is shown to be capable of undergoing autophosphorylation on serine, threonine and tyrosine residues. In this study, we show that purified 45 kDa protein can phosphorylate a kinase‐negative mutant of Xenopus MAP kinase on tyrosine and threonine residues, suggesting that the 45 kDa protein functions as a MAP kinase kinase to activate MAP kinase. We then report the cloning and sequencing of a full‐length cDNA encoding this 45 kDa MAP kinase kinase, and show that it is highly homologous to four protein kinases in fission and budding yeasts: byr1, wis1, PBS2 and STE7. These yeast kinases are therefore suggested to function as a direct upstream activator for a presumed MAP kinase homolog in each signal transduction pathway involved in the regulation of cell cycle progression or cellular responses to extracellular signals. Finally, we report bacterial expression of recombinant MAP kinase kinase that can be phosphorylated and activated by Xenopus egg extracts.

Collaboration


Dive into the Hidetaka Kosako's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kou Motani

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoshi Matsuda

Kansai Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge