Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidetsugu Saito is active.

Publication


Featured researches published by Hidetsugu Saito.


Hepatology | 2014

Free cholesterol accumulation in hepatic stellate cells: Mechanism of liver fibrosis aggravation in nonalcoholic steatohepatitis in mice

Kengo Tomita; Toshiaki Teratani; Takahiro Suzuki; Motonori Shimizu; Hirokazu Sato; Kazuyuki Narimatsu; Yoshikiyo Okada; Chie Kurihara; Rie Irie; Hirokazu Yokoyama; Katsuyoshi Shimamura; Shingo Usui; Hirotoshi Ebinuma; Hidetsugu Saito; Chikako Watanabe; Shunsuke Komoto; Atsushi Kawaguchi; Shigeaki Nagao; Kazuo Sugiyama; Ryota Hokari; Takanori Kanai; Soichiro Miura; Toshifumi Hibi

Although nonalcoholic steatohepatitis (NASH) is associated with hypercholesterolemia, the underlying mechanisms of this association have not been clarified. We aimed to elucidate the precise role of cholesterol in the pathophysiology of NASH. C57BL/6 mice were fed a control, high‐cholesterol (HC), methionine‐choline‐deficient (MCD), or MCD+HC diet for 12 weeks or a control, HC, high‐fat (HF), or HF+HC diet for 24 weeks. Increased cholesterol intake accelerated liver fibrosis in both the mouse models without affecting the degree of hepatocellular injury or Kupffer cell activation. The major causes of the accelerated liver fibrosis involved free cholesterol (FC) accumulation in hepatic stellate cells (HSCs), which increased Toll‐like receptor 4 protein (TLR4) levels through suppression of the endosomal‐lysosomal degradation pathway of TLR4, and thereby sensitized the cells to transforming growth factor (TGF)β‐induced activation by down‐regulating the expression of bone morphogenetic protein and activin membrane‐bound inhibitor. Mammalian‐cell cholesterol levels are regulated by way of a feedback mechanism mediated by sterol regulatory element‐binding protein 2 (SREBP2), maintaining cellular cholesterol homeostasis. Nevertheless, HSCs were sensitive to FC accumulation because the high intracellular expression ratio of SREBP cleavage‐activating protein (Scap) to insulin‐induced gene (Insig) disrupted the SREBP2‐mediated feedback regulation of cholesterol homeostasis in these cells. HSC activation subsequently enhanced the disruption of the feedback system by Insig‐1 down‐regulation. In addition, the suppression of peroxisome proliferator‐activated receptor γ signaling accompanying HSC activation enhanced both SREBP2 and microRNA‐33a signaling. Consequently, FC accumulation in HSCs increased and further sensitized these cells to TGFβ‐induced activation in a vicious cycle, leading to exaggerated liver fibrosis in NASH. Conclusion: These characteristic mechanisms of FC accumulation in HSCs are potential targets to treat liver fibrosis in liver diseases including NASH. (Hepatology 2014;58:154–169)


Clinical Reviews in Allergy & Immunology | 2014

Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review.

Yoshimasa Saito; Hidetsugu Saito; Gangning Liang; Jeffrey M. Friedman

Epigenetic markers such as DNA methylation and histone modifications around promoter regions modify chromatin structure and regulate expression of downstream genes. In fact, aberrant epigenetic modifications are common events in human disease including tumorigenesis and autoimmunity. Small non-coding RNAs named microRNAs (miRNAs) are modulators of gene expression and play critical roles in various cellular processes. Several miRNAs have been characterized as tumor suppressors or oncogenes in cancer, and recent reports implicate certain miRNAs in the pathogenesis of autoimmune diseases. Epigenetic investigations have shown that distinct miRNAs are directly regulated by DNA methylation and histone modifications at their promoters. Moreover, miRNAs themselves are key participants in regulating the chromatin modifying machinery. Chromatin-modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown efficacy in human malignancies and there is some evidence that these drugs may be useful in autoimmune disease. The benefits of these drugs are at least partially mediated by restoring expression of epigenetically silenced tumor suppressor genes, including miRNAs. The complex layers regulating gene expression have yet to be fully elucidated, but it is clear that epigenetic alterations and miRNA misexpression are essential events in pathologic processes, especially cancer and autoimmune disease, and represent promising therapeutic targets.


Frontiers in Genetics | 2012

MicroRNAs in cancers and neurodegenerative disorders

Yoshimasa Saito; Hidetsugu Saito

MicroRNAs (miRNAs) are small non-coding RNAs which function as endogenous silencers of various target genes. miRNAs are expressed in a tissue-specific manner and playing important roles in cell proliferation, apoptosis, and differentiation during mammalian development. Links between miRNAs and the initiation and progression of human diseases including cancer are becoming increasingly apparent. Recent studies have revealed that some miRNAs such as miR-9, miR-29 family, and miR-34 family are differentially expressed in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. These miRNAs are also reported to act as tumor suppressors during human carcinogenesis. In this review, we discuss about miRNAs which are important in the molecular pathogenesis of both cancer and neurodegeneration. Cancer and neurodegenerative disorder may be influenced by common miRNA pathways that regulate differentiation, proliferation, and death of cells.


Cancer Science | 2014

Silencing of microRNA‐122 is an early event during hepatocarcinogenesis from non‐alcoholic steatohepatitis

Yoko Takaki; Yoshimasa Saito; Azusa Takasugi; Kohta Toshimitsu; Shoji Yamada; Toshihide Muramatsu; Masaki Kimura; Kazuo Sugiyama; Hiromu Suzuki; Eri Arai; Hidenori Ojima; Yae Kanai; Hidetsugu Saito

Non‐alcoholic steatohepatitis (NASH) has emerged as a common cause of chronic liver disease and virus‐independent hepatocellular carcinoma (HCC) in patients with obesity, diabetes, and metabolic syndrome. To reveal the molecular mechanism underlying hepatocarcinogenesis from NASH, microRNA (miRNA) expression profiles were analyzed in STAM mice, a NASH‐HCC animal model. MicroRNA expression was also examined in 42 clinical samples of HCC tissue. Histopathological images of the liver of STAM mice at the ages of 6, 8, 12, and 18 weeks showed findings compatible with fatty liver, NASH, liver cirrhosis (LC), and HCC, respectively. Expression of miR‐122 in non‐tumor LC at the age of 18 weeks was significantly lower than that in LC at the age of 12 weeks. Expression of miR‐122 was further decreased in HCCs relative to non‐tumor LC at the age of 18 weeks. Expression of miR‐122 was also decreased in clinical samples of liver tissue showing macrovesicular steatosis and HCC, being consistent with the findings in the NASH model mice. DNA methylation analysis revealed that silencing of miR‐122 was not mediated by DNA hypermethylation of the promoter region. These results suggest that silencing of miR‐122 is an early event during hepatocarcinogenesis from NASH, and that miR‐122 could be a novel molecular marker for evaluating the risk of HCC in patients with NASH.


Oncogenesis | 2014

Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells

Sana Hibino; Yoshimasa Saito; Toshihide Muramatsu; A Otani; Yusuke Kasai; Masaki Kimura; Hidetsugu Saito

Enhancer of zeste homolog 2 (EZH2) enhances tumorigenesis and is commonly overexpressed in several types of cancer. To investigate the anticancer effects of EZH2 inhibitors, microRNA (miRNA) expression profiles were examined in gastric and liver cancer cells treated with suberoylanilide hydroxamic acid (SAHA) and 3-deazaneplanocin A (DZNep). We confirmed that SAHA and DZNep suppressed EZH2 expression in AGS and HepG2 cells and inhibited their proliferation. The results of microarray analyses demonstrated that miR-1246 was commonly upregulated in cancer cells by treatment with SAHA and DZNep. MiR-302a and miR-4448 were markedly upregulated by treatment with SAHA and DZNep, respectively. DYRK1A, CDK2, BMI-1 and Girdin, which are targets of miR-1246, miR-302a and miR-4448, were suppressed by treatment with SAHA and DZNep, leading to apoptosis, cell cycle arrest and reduced migration of AGS and HepG2 cells. ChIP assay revealed that SAHA and DZNep inhibited the binding of EZH2 to the promoter regions of miR-1246, miR-302a and miR-4448. These findings suggest that EZH2 inhibitors such as SAHA and DZNep exert multiple anticancer effects through activation of tumor-suppressor miRNAs.


Hepatology Research | 2014

Alterations of epigenetics and microRNA in hepatocellular carcinoma.

Yoshimasa Saito; Sana Hibino; Hidetsugu Saito

Studies have shown that alterations of epigenetics and microRNA (miRNA) play critical roles in the initiation and progression of hepatocellular carcinoma (HCC). Epigenetic silencing of tumor suppressor genes in HCC is generally mediated by DNA hypermethylation of CpG island promoters and histone modifications such as histone deacetylation, methylation of histone H3 lysine 9 (H3K9) and tri‐methylation of H3K27. Chromatin‐modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown clinical promise for cancer therapy. miRNA are small non‐coding RNA that regulate expression of various target genes. Specific miRNA are aberrantly expressed and play roles as tumor suppressors or oncogenes during hepatocarcinogenesis. We and other groups have demonstrated that important tumor suppressor miRNA are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies including HCC. Restoring the expression of tumor suppressor miRNA by inhibitors of DNA methylation and histone deacetylase may be a promising therapeutic strategy for HCC.


Journal of Hepatology | 2014

Acyl-CoA:cholesterol acyltransferase 1 mediates liver fibrosis by regulating free cholesterol accumulation in hepatic stellate cells

Kengo Tomita; Toshiaki Teratani; Takahiro Suzuki; Motonori Shimizu; Hirokazu Sato; Kazuyuki Narimatsu; Shingo Usui; Hirotaka Furuhashi; Akifumi Kimura; Kiyoshi Nishiyama; Tadashi Maejima; Yoshikiyo Okada; Chie Kurihara; Katsuyoshi Shimamura; Hirotoshi Ebinuma; Hidetsugu Saito; Hirokazu Yokoyama; Chikako Watanabe; Shunsuke Komoto; Shigeaki Nagao; Kazuo Sugiyama; Suefumi Aosasa; Kazuo Hatsuse; Junji Yamamoto; Toshifumi Hibi; Soichiro Miura; Ryota Hokari; Takanori Kanai

BACKGROUND & AIMSnAcyl-coenzyme A: cholesterol acyltransferase (ACAT) catalyzes the conversion of free cholesterol (FC) to cholesterol ester, which prevents excess accumulation of FC. We recently found that FC accumulation in hepatic stellate cells (HSCs) plays a role in progression of liver fibrosis, but the effect of ACAT1 on liver fibrosis has not been clarified. In this study, we aimed to define the role of ACAT1 in the pathogenesis of liver fibrosis.nnnMETHODSnACAT1-deficient and wild-type mice, or Toll-like receptor 4 (TLR4)(-/-)ACAT1(+/+) and TLR4(-/-)ACAT1(-/-) mice were subjected to bile duct ligation (BDL) for 3 weeks or were given carbon tetrachloride (CCl4) for 4 weeks to induce liver fibrosis.nnnRESULTSnACAT1 was the major isozyme in mice and human primary HSCs, and ACAT2 was the major isozyme in mouse primary hepatocytes and Kupffer cells. ACAT1 deficiency significantly exaggerated liver fibrosis in the mouse models of liver fibrosis, without affecting the degree of hepatocellular injury or liver inflammation, including hepatocyte apoptosis or Kupffer cell activation. ACAT1 deficiency significantly increased FC levels in HSCs, augmenting TLR4 protein and downregulating expression of transforming growth factor-β (TGFβ) pseudoreceptor Bambi (bone morphogenetic protein and activin membrane-bound inhibitor), leading to sensitization of HSCs to TGFβ activation. Exacerbation of liver fibrosis by ACAT1 deficiency was dependent on FC accumulation-induced enhancement of TLR4 signaling.nnnCONCLUSIONSnACAT1 deficiency exaggerates liver fibrosis mainly through enhanced FC accumulation in HSCs. Regulation of ACAT1 activities in HSCs could be a target for treatment of liver fibrosis.


Frontiers in Genetics | 2012

Role of CTCF in the regulation of microRNA expression

Yoshimasa Saito; Hidetsugu Saito

MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression of various target genes. miRNAs are expressed in a tissue-specific manner and play important roles in cell proliferation, apoptosis, and differentiation. Epigenetic alterations such as DNA methylation and histone modification are essential for chromatin remodeling and regulation of gene expression including miRNAs. The CCCTC-binding factor, CTCF, is known to bind insulators and exhibits an enhancer-blocking and barrier function, and more recently, it also contributes to the three-dimensional organization of the genome. CTCF can also serve as a barrier against the spread of DNA methylation and histone repressive marks over promoter regions of tumor suppressor genes. Recent studies have shown that CTCF is also involved in the regulation of miRNAs such as miR-125b1, miR-375, and the miR-290 cluster in cancer cells and stem cells. miR-125b1 is a candidate of tumor suppressor and is silenced in breast cancer cells. On the other hand, miR-375 may have oncogenic function and is overexpressed in breast cancer cells. CTCF is involved in the regulation of both miR-125b1 and miR-375, indicating that there are various patterns of CTCF-associated epigenetic regulation of miRNAs. CTCF may also play a key role in the pluripotency of cells through the regulation of miR-290 cluster. These observations suggest that CTCF-mediated regulation of miRNAs could be a novel approach for cancer therapy and regenerative medicine.


Journal of Clinical Medicine | 2015

microRNA-34a as a Therapeutic Agent against Human Cancer.

Yoshimasa Saito; Toshiaki Nakaoka; Hidetsugu Saito

microRNAs (miRNAs) are small non-coding RNAs that down-regulate expression of various target genes. Cancer-related miRNAs are aberrantly expressed and act as tumor suppressors or oncogenes during carcinogenesis. We and other researchers have demonstrated that important tumor suppressor miRNAs are silenced by epigenetic alterations, resulting in the activation of target oncogenes in cancer cells. miR-34a was identified as a target of p53 and induces a G1 cell cycle arrest, senescence and apoptosis in response to DNA damage. miR-34a is an important tumor suppressor whose expression is epigenetically silenced in various human cancers. Enforced expression of miR-34a induces cell cycle arrest, apoptosis, senescence, and suppression of epithelial-mesenchymal transition and inhibits cell proliferation of cancer stem cells. Epigenetic therapy with chromatin-modifying drugs such as inhibitors of DNA methylation and histone deacetylase has shown clinical promise for the treatment of malignancies. Restoring of miR-34a expression by epigenetic therapy and/or delivery of miR-34a mimics may be a promising therapeutic strategy against human cancer.


Journal of Cellular Biochemistry | 2013

Suppressive effect of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) on hepatitis C virus replication

Ayami Sato; Yoshimasa Saito; Kazuo Sugiyama; Noriko Sakasegawa; Toshihide Muramatsu; Shinya Fukuda; Mikiko Yoneya; Masaki Kimura; Hirotoshi Ebinuma; Toshifumi Hibi; Masanori Ikeda; Nobuyuki Kato; Hidetsugu Saito

The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) has a clinical promise for treatment of cancer including hepatocellular carcinoma (HCC). To investigate effect of SAHA on hepatitis C virus (HCV) replication, we treated the HCV replicon cell OR6 with SAHA. HCV replication was significantly inhibited by SAHA at concentrations below 1u2009μM with no cellular toxicity. Another HDAC inhibitor, tricostatin A, also showed reduction of HCV replication. The microarray analysis and quantitative RT‐PCR demonstrated up‐regulation of osteopontin (OPN) and down‐regulation of apolipoprotein‐A1 (Apo‐A1) after SAHA treatment. Direct gene induction of OPN and knockdown of Apo‐A1 also showed reduction of HCV replication. The liver specific microRNA‐122, which is involved in HCV replication, was not affected by SAHA treatment. These results suggest that SAHA has suppressive effect on HCV replication through alterations of gene expression such as OPN and Apo‐A1 in host cells. Epigenetic treatment with HDAC inhibitors may be a novel therapeutic approach for diseases associated with HCV infection such as chronic hepatitis, liver cirrhosis, and HCC. J. Cell. Biochem. 114: 1987–1996, 2013.

Collaboration


Dive into the Hidetsugu Saito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chie Kurihara

National Defense Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge