Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshimasa Saito is active.

Publication


Featured researches published by Yoshimasa Saito.


PLOS ONE | 2012

Overexpression of miR-142-5p and miR-155 in Gastric Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma Resistant to Helicobacter pylori Eradication

Yoshimasa Saito; Hidekazu Suzuki; Hitoshi Tsugawa; Hiroyuki Imaeda; Juntaro Matsuzaki; Kenro Hirata; Naoki Hosoe; Masahiko Nakamura; Makio Mukai; Hidetsugu Saito; Toshifumi Hibi

microRNAs (miRNAs) are small non-coding RNAs that can function as endogenous silencers of target genes and play critical roles in human malignancies. To investigate the molecular pathogenesis of gastric mucosa-associated lymphoid tissue (MALT) lymphoma, the miRNA expression profile was analyzed. miRNA microarray analysis with tissue specimens from gastric MALT lymphomas and surrounding non-tumor mucosae revealed that a hematopoietic-specific miRNA miR-142 and an oncogenic miRNA miR-155 were overexpressed in MALT lymphoma lesions. The expression levels of miR-142-5p and miR-155 were significantly increased in MALT lymphomas which do not respond to Helicobacter pylori (H. pylori) eradication. The expression levels of miR-142-5p and miR-155 were associated with the clinical courses of gastric MALT lymphoma cases. Overexpression of miR-142-5p and miR-155 was also observed in Helicobacter heilmannii-infected C57BL/6 mice, an animal model of gastric MALT lymphoma. In addition, miR-142-5p and miR-155 suppress the proapoptotic gene TP53INP1 as their target. The results of this study indicate that overexpression of miR-142-5p and miR-155 plays a critical role in the pathogenesis of gastric MALT lymphoma. These miRNAs might have potential application as therapeutic targets and novel biomarkers for gastric MALT lymphoma.


International Journal of Cancer | 2013

The tumor suppressor microRNA-29c is downregulated and restored by celecoxib in human gastric cancer cells.

Yoshimasa Saito; Hidekazu Suzuki; Hiroyuki Imaeda; Juntaro Matsuzaki; Kenro Hirata; Hitoshi Tsugawa; Sana Hibino; Yae Kanai; Hidetsugu Saito; Toshifumi Hibi

MicroRNAs (miRNAs) are small noncoding RNAs that function as endogenous silencers of target genes and play critical roles during carcinogenesis. The selective cyclooxygenase‐2 (COX‐2) inhibitor celecoxib has been highlighted as a potential drug for treatment of gastrointestinal tumors. The aim of this study was to investigate the role of miRNAs in gastric carcinogenesis and the feasibility of a new therapeutic approach for gastric cancer. miRNA expression profiles were examined in 53 gastric tumors including gastric adenomas (atypical epithelia), early gastric cancers and advanced gastric cancers and in gastric cancer cells treated with celecoxib. miRNA microarray analysis revealed that miR‐29c was significantly downregulated in gastric cancer tissues relative to nontumor gastric mucosae. miR‐29c was significantly activated by celecoxib in gastric cancer cells. Downregulation of miR‐29c was associated with progression of gastric cancer and was more prominent in advanced gastric cancers than in gastric adenomas and early gastric cancer. In addition, expression of the oncogene Mcl‐1, a target of miR‐29c, was significantly increased in gastric cancer tissues relative to nontumor gastric mucosae. Activation of miR‐29c by celecoxib induced suppression of Mcl‐1 and apoptosis in gastric cancer cells. These results suggest that downregulation of the tumor suppressor miR‐29c plays critical roles in the progression of gastric cancer. Selective COX‐2 inhibitors may have clinical promise for the treatment of gastric cancer via restoration of miR‐29c.


Clinical Reviews in Allergy & Immunology | 2014

Epigenetic alterations and microRNA misexpression in cancer and autoimmune diseases: a critical review.

Yoshimasa Saito; Hidetsugu Saito; Gangning Liang; Jeffrey M. Friedman

Epigenetic markers such as DNA methylation and histone modifications around promoter regions modify chromatin structure and regulate expression of downstream genes. In fact, aberrant epigenetic modifications are common events in human disease including tumorigenesis and autoimmunity. Small non-coding RNAs named microRNAs (miRNAs) are modulators of gene expression and play critical roles in various cellular processes. Several miRNAs have been characterized as tumor suppressors or oncogenes in cancer, and recent reports implicate certain miRNAs in the pathogenesis of autoimmune diseases. Epigenetic investigations have shown that distinct miRNAs are directly regulated by DNA methylation and histone modifications at their promoters. Moreover, miRNAs themselves are key participants in regulating the chromatin modifying machinery. Chromatin-modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown efficacy in human malignancies and there is some evidence that these drugs may be useful in autoimmune disease. The benefits of these drugs are at least partially mediated by restoring expression of epigenetically silenced tumor suppressor genes, including miRNAs. The complex layers regulating gene expression have yet to be fully elucidated, but it is clear that epigenetic alterations and miRNA misexpression are essential events in pathologic processes, especially cancer and autoimmune disease, and represent promising therapeutic targets.


Frontiers in Genetics | 2012

MicroRNAs in cancers and neurodegenerative disorders

Yoshimasa Saito; Hidetsugu Saito

MicroRNAs (miRNAs) are small non-coding RNAs which function as endogenous silencers of various target genes. miRNAs are expressed in a tissue-specific manner and playing important roles in cell proliferation, apoptosis, and differentiation during mammalian development. Links between miRNAs and the initiation and progression of human diseases including cancer are becoming increasingly apparent. Recent studies have revealed that some miRNAs such as miR-9, miR-29 family, and miR-34 family are differentially expressed in Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. These miRNAs are also reported to act as tumor suppressors during human carcinogenesis. In this review, we discuss about miRNAs which are important in the molecular pathogenesis of both cancer and neurodegeneration. Cancer and neurodegenerative disorder may be influenced by common miRNA pathways that regulate differentiation, proliferation, and death of cells.


Oncogenesis | 2014

Inhibitors of enhancer of zeste homolog 2 (EZH2) activate tumor-suppressor microRNAs in human cancer cells

Sana Hibino; Yoshimasa Saito; Toshihide Muramatsu; A Otani; Yusuke Kasai; Masaki Kimura; Hidetsugu Saito

Enhancer of zeste homolog 2 (EZH2) enhances tumorigenesis and is commonly overexpressed in several types of cancer. To investigate the anticancer effects of EZH2 inhibitors, microRNA (miRNA) expression profiles were examined in gastric and liver cancer cells treated with suberoylanilide hydroxamic acid (SAHA) and 3-deazaneplanocin A (DZNep). We confirmed that SAHA and DZNep suppressed EZH2 expression in AGS and HepG2 cells and inhibited their proliferation. The results of microarray analyses demonstrated that miR-1246 was commonly upregulated in cancer cells by treatment with SAHA and DZNep. MiR-302a and miR-4448 were markedly upregulated by treatment with SAHA and DZNep, respectively. DYRK1A, CDK2, BMI-1 and Girdin, which are targets of miR-1246, miR-302a and miR-4448, were suppressed by treatment with SAHA and DZNep, leading to apoptosis, cell cycle arrest and reduced migration of AGS and HepG2 cells. ChIP assay revealed that SAHA and DZNep inhibited the binding of EZH2 to the promoter regions of miR-1246, miR-302a and miR-4448. These findings suggest that EZH2 inhibitors such as SAHA and DZNep exert multiple anticancer effects through activation of tumor-suppressor miRNAs.


Hepatology Research | 2014

Alterations of epigenetics and microRNA in hepatocellular carcinoma.

Yoshimasa Saito; Sana Hibino; Hidetsugu Saito

Studies have shown that alterations of epigenetics and microRNA (miRNA) play critical roles in the initiation and progression of hepatocellular carcinoma (HCC). Epigenetic silencing of tumor suppressor genes in HCC is generally mediated by DNA hypermethylation of CpG island promoters and histone modifications such as histone deacetylation, methylation of histone H3 lysine 9 (H3K9) and tri‐methylation of H3K27. Chromatin‐modifying drugs such as DNA methylation inhibitors and histone deacetylase inhibitors have shown clinical promise for cancer therapy. miRNA are small non‐coding RNA that regulate expression of various target genes. Specific miRNA are aberrantly expressed and play roles as tumor suppressors or oncogenes during hepatocarcinogenesis. We and other groups have demonstrated that important tumor suppressor miRNA are silenced by epigenetic alterations, resulting in activation of target oncogenes in human malignancies including HCC. Restoring the expression of tumor suppressor miRNA by inhibitors of DNA methylation and histone deacetylase may be a promising therapeutic strategy for HCC.


Frontiers in Genetics | 2011

MicroRNAs in Hepatobiliary and Pancreatic Cancers.

Yoshimasa Saito; Hidekazu Suzuki; Misa Matsuura; Ayami Sato; Yusuke Kasai; Kana Yamada; Hidetsugu Saito; Toshifumi Hibi

MicroRNAs (miRNAs) are small non-coding RNAs that function as endogenous silencers of numerous target genes. Hundreds of miRNAs have been identified in the human genome. miRNAs are expressed in a tissue-specific manner and play important roles in cell proliferation, apoptosis, and differentiation. Aberrant expression of miRNAs may also contribute to the development and progression of human hepatobiliary and pancreatic cancers. Recent studies have shown that some miRNAs play roles as tumor suppressors or oncogenes in hepatobiliary and pancreatic cancers. miR-122, let-7 family, and miR-101 are down-regulated in hepatocellular carcinoma (HCC), suggesting that it is a potential tumor suppressor of HCC. miR-221 and miR-222 are up-regulated in HCC and may act as oncogenic miRNAs in hepatocarcinogenesis. miRNA expression profiling may be a powerful clinical tool for diagnosis and regulation of miRNA expression could be a novel therapeutic strategy for hepatobiliary and pancreatic cancers. In this review, we summarize current knowledge about the roles of important tumor suppressor microRNAs and oncogenic microRNAs in hepatobiliary and pancreatic cancers.


Gastroenterology | 2013

Bile Acids Increase Levels of MicroRNAs 221 and 222, Leading to Degradation of CDX2 During Esophageal Carcinogenesis

Juntaro Matsuzaki; Hidekazu Suzuki; Hitoshi Tsugawa; Mitsuhiro Watanabe; Sharif Hossain; Eri Arai; Yoshimasa Saito; Shigeki Sekine; Toshihiro Akaike; Yae Kanai; Ken Ichi Mukaisho; Johan Auwerx; Toshifumi Hibi

BACKGROUND & AIMSnBile reflux contributes to development of Barretts esophagus (BE) and could be involved in its progression to esophageal adenocarcinoma (EAC). We investigated whether bile acids affect levels or functions of microRNAs (MIRs) 221 and 222, which bind to the 3-UTR of p27Kip1 messenger RNA to inhibit its translation. Reduced p27Kip1 increases degradation of the transcription factor CDX2; levels of CDX2 have been reported to decrease during progression of BE to EAC.nnnMETHODSnWe used quantitative reverse transcriptase polymerase chain reaction to compare levels of MIRs 221 and 222 and immunohistochemistry to compare levels of p27Kip1 and CDX2 proteins in areas of BE and EAC from each of 11 patients. We examined the effects of bile acid exposure on levels of MIRs 221 and 222 and CDX2 in EAC cells. We investigated the effects of inhibitors of MIRs 221 and 222 on growth of human EAC xenograft tumors in NOD/SCID/IL-2Rγ(null) mice.nnnRESULTSnLevels of MIRs 221 and 222 increased and levels of p27Kip1 and CDX2 decreased in areas of EAC vs BE. Levels of MIRs 221 and 222 increased, along with activity of nuclear bile acid receptor/farnesoid X receptor (FXR), when cultured cells were exposed to bile acids. Incubation of cells with bile acids increased degradation of CDX2; this process was reduced when cells were also incubated with proteasome inhibitors. Overexpression of MIRs 221 and 222 reduced levels of p27Kip1 and CDX2, and knockdown of these MIRs increased levels of these proteins in cultured cells. Inhibitors of MIRs 221 and 222 increased levels of p27Kip1 and CDX2 in EAC cells and reduced growth of xenograft tumors in NOD/SCID/IL-2Rγ(null) mice.nnnCONCLUSIONSnWe observed increased levels of MIRs 221 and 222 in human EAC tissues, compared with areas of BE from the same patient. We found that exposure of esophageal cells to bile acids activates FXR and increases levels of MIRs 221 and 222, reducing levels of p27Kip1 and promoting degradation of CDX2 by the proteasome. Our work opened the perspective of therapeutically targeting this pathway either via FXR antagonists or inhibitors of MIRs as a treatment option for BE and EAC.


Frontiers in Genetics | 2012

Role of CTCF in the regulation of microRNA expression

Yoshimasa Saito; Hidetsugu Saito

MicroRNAs (miRNAs) are small non-coding RNAs that regulate expression of various target genes. miRNAs are expressed in a tissue-specific manner and play important roles in cell proliferation, apoptosis, and differentiation. Epigenetic alterations such as DNA methylation and histone modification are essential for chromatin remodeling and regulation of gene expression including miRNAs. The CCCTC-binding factor, CTCF, is known to bind insulators and exhibits an enhancer-blocking and barrier function, and more recently, it also contributes to the three-dimensional organization of the genome. CTCF can also serve as a barrier against the spread of DNA methylation and histone repressive marks over promoter regions of tumor suppressor genes. Recent studies have shown that CTCF is also involved in the regulation of miRNAs such as miR-125b1, miR-375, and the miR-290 cluster in cancer cells and stem cells. miR-125b1 is a candidate of tumor suppressor and is silenced in breast cancer cells. On the other hand, miR-375 may have oncogenic function and is overexpressed in breast cancer cells. CTCF is involved in the regulation of both miR-125b1 and miR-375, indicating that there are various patterns of CTCF-associated epigenetic regulation of miRNAs. CTCF may also play a key role in the pluripotency of cells through the regulation of miR-290 cluster. These observations suggest that CTCF-mediated regulation of miRNAs could be a novel approach for cancer therapy and regenerative medicine.


Journal of Cellular Biochemistry | 2013

Suppressive effect of the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) on hepatitis C virus replication

Ayami Sato; Yoshimasa Saito; Kazuo Sugiyama; Noriko Sakasegawa; Toshihide Muramatsu; Shinya Fukuda; Mikiko Yoneya; Masaki Kimura; Hirotoshi Ebinuma; Toshifumi Hibi; Masanori Ikeda; Nobuyuki Kato; Hidetsugu Saito

The histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) has a clinical promise for treatment of cancer including hepatocellular carcinoma (HCC). To investigate effect of SAHA on hepatitis C virus (HCV) replication, we treated the HCV replicon cell OR6 with SAHA. HCV replication was significantly inhibited by SAHA at concentrations below 1u2009μM with no cellular toxicity. Another HDAC inhibitor, tricostatin A, also showed reduction of HCV replication. The microarray analysis and quantitative RT‐PCR demonstrated up‐regulation of osteopontin (OPN) and down‐regulation of apolipoprotein‐A1 (Apo‐A1) after SAHA treatment. Direct gene induction of OPN and knockdown of Apo‐A1 also showed reduction of HCV replication. The liver specific microRNA‐122, which is involved in HCV replication, was not affected by SAHA treatment. These results suggest that SAHA has suppressive effect on HCV replication through alterations of gene expression such as OPN and Apo‐A1 in host cells. Epigenetic treatment with HDAC inhibitors may be a novel therapeutic approach for diseases associated with HCV infection such as chronic hepatitis, liver cirrhosis, and HCC. J. Cell. Biochem. 114: 1987–1996, 2013.

Collaboration


Dive into the Yoshimasa Saito's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge