Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hilary Weller is active.

Publication


Featured researches published by Hilary Weller.


Journal of Climate | 2012

The Role of Atmosphere Feedbacks during ENSO in the CMIP3 Models. Part III: The Shortwave Flux Feedback

James Lloyd; Eric Guilyardi; Hilary Weller

AbstractPrevious studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Nino–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (αSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that αSW is the primary contributor to model thermodynamical damping errors.A “feedback decomposition method,” developed to elucidate the αSW biases, shows that all models underestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to underestimated αSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in αSW. Changes in the αSW feedback between the coupled and corresponding atmosphere-only simulatio...


Monthly Weather Review | 2009

Voronoi, Delaunay, and Block-Structured Mesh Refinement for Solution of the Shallow-Water Equations on the Sphere

Hilary Weller; Henry G. Weller; Aimé Fournier

Abstract Alternative meshes of the sphere and adaptive mesh refinement could be immensely beneficial for weather and climate forecasts, but it is not clear how mesh refinement should be achieved. A finite-volume model that solves the shallow-water equations on any mesh of the surface of the sphere is presented. The accuracy and cost effectiveness of four quasi-uniform meshes of the sphere are compared: a cubed sphere, reduced latitude–longitude, hexagonal–icosahedral, and triangular–icosahedral. On some standard shallow-water tests, the hexagonal–icosahedral mesh performs best and the reduced latitude–longitude mesh performs well only when the flow is aligned with the mesh. The inclusion of a refined mesh over a disc-shaped region is achieved using either gradual Delaunay, gradual Voronoi, or abrupt 2:1 block-structured refinement. These refined regions can actually degrade global accuracy, presumably because of changes in wave dispersion where the mesh is highly nonuniform. However, using gradual refinem...


Philosophical Transactions of the Royal Society A | 2009

Developing the next-generation climate system models: challenges and achievements

Julia Slingo; Kevin Bates; Nikos Nikiforakis; M. D. Piggott; Malcolm J. Roberts; Len Shaffrey; Ian Stevens; Pier Luigi Vidale; Hilary Weller

Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.


Monthly Weather Review | 2012

Controlling the Computational Modes of the Arbitrarily Structured C Grid

Hilary Weller

AbstractThe arbitrarily structured C grid, Thuburn–Ringler–Skamarock–Klemp (TRiSK), is being used in the Model for Prediction Across Scales (MPAS) and is being considered by the Met Office for their next dynamical core. However, the hexagonal C grid supports a branch of spurious Rossby modes, which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilized transport (CLUST), a blend between centered and linear-upwind with the blend dependent on the flow direction with respect to the cell edge.A diagnostic of grid-scale oscillations is proposed that gives further discrimination between schemes than using potential enstrophy alone. Indeed, some schemes are fo...


Journal of Climate | 2008

The Importance of High-Frequency Sea Surface Temperature Variability to the Intraseasonal Oscillation of Indian Monsoon Rainfall

Nicholas P. Klingaman; Peter M. Inness; Hilary Weller; Julia Slingo

Abstract While the Indian monsoon exhibits substantial variability on interannual time scales, its intraseasonal variability (ISV) is of greater magnitude and hence of critical importance for monsoon predictability. This ISV comprises a 30–50-day northward-propagating oscillation (NPISO) between active and break events of enhanced and reduced rainfall, respectively, over the subcontinent. Recent studies have implied that coupled general circulation models (CGCMs) were better able to simulate the NPISO than their atmosphere-only counterparts (AGCMs). These studies have forced their AGCMs with SSTs from coupled integrations or observations from satellite-based infrared sounders, both of which underestimate the ISV of tropical SSTs. The authors have forced the 1.25° × 0.83° Hadley Centre Atmospheric Model (HadAM3) with a daily, high-resolution, observed SST analysis from the United Kingdom National Center for Ocean Forecasting that contains greater ISV in the Indian Ocean than past products. One ensemble of ...


Journal of Climate | 2011

The Impact of Finer-Resolution Air–Sea Coupling on the Intraseasonal Oscillation of the Indian Monsoon

Nicholas P. Klingaman; Steven J. Woolnough; Hilary Weller; Julia Slingo

AbstractA newly assembled atmosphere–ocean coupled model, called HadKPP, is described and then used to determine the effects of subdaily air–sea coupling and fine near-surface ocean vertical resolution on the representation of the Northern Hemisphere summer intraseasonal oscillation. HadKPP comprises the Hadley Centre atmospheric model coupled to the K-Profile Parameterization ocean boundary layer model.Four 30-member ensembles were performed that vary in ocean vertical resolution between 1 and 10 m and in coupling frequency between 3 and 24 h. The 10-m, 24-h ensemble exhibited roughly 60% of the observed 30–50-day variability in sea surface temperatures and rainfall and very weak northward propagation. Enhancing only the vertical resolution or only the coupling frequency produced modest improvements in variability and just a standing intraseasonal oscillation. Only the 1-m, 3-h configuration generated organized, northward-propagating convection similar to observations. Subdaily surface forcing produced s...


Bulletin of the American Meteorological Society | 2009

Methods and resources for climate impacts research: achieving synergy

Andrew J. Challinor; Tom M. Osborne; Andrew P. Morse; Leonard Christopher Shaffrey; Tim Wheeler; Hilary Weller; Pier Luigi Vidale

Abstract The prediction of climate variability and change requires the use of a range of simulation models. Multiple climate model simulations are needed to sample the inherent uncertainties in seasonal to centennial prediction. Because climate models are computationally expensive, there is a tradeoff between complexity, spatial resolution, simulation length, and ensemble size. The methods used to assess climate impacts are examined in the context of this trade-off. An emphasis on complexity allows simulation of coupled mechanisms, such as the carbon cycle and feedbacks between agricultural land management and climate. In addition to improving skill, greater spatial resolution increases relevance to regional planning. Greater ensemble size improves the sampling of probabilities. Research from major international projects is used to show the importance of synergistic research efforts. The primary climate impact examined is crop yield, although many of the issues discussed are relevant to hydrology and heal...


Journal of Computational Physics | 2013

Runge-Kutta IMEX schemes for the Horizontally Explicit/Vertically Implicit (HEVI) solution of wave equations

Hilary Weller; Sarah-Jane Lock; Nigel Wood

Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection-diffusion equations. We demonstrate how a number of Runge-Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge-Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge-Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.


Monthly Weather Review | 2012

Computational Modes and Grid Imprinting on Five Quasi-Uniform Spherical C Grids

Hilary Weller; John Thuburn; Colin J. Cotter

AbstractCurrently, most operational forecasting models use latitude–longitude grids, whose convergence of meridians toward the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al. and Ringler et al. have developed a method for arbitrarily structured, orthogonal C grids called TRiSK, which has many of the desirable properties of the C grid on latitude–longitude grids but which works on a variety of quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to solve the shallow-water equations.Some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a “Voronoi-ized” cubed sphere, a Voronoi-ized skipped latitude–longitude grid, and a grid of kites in comparison to a full latitude–longitude grid are demonstrated. It is shown that the hexagonal icosahedron gives the most accurate results (for least computational cost). All of the grids suffer from spurious computational modes; this is especiall...


Journal of Climate | 2008

The Intraseasonal Variability of the Indian Summer Monsoon Using TMI Sea Surface Temperatures and ECMWF Reanalysis

Nicholas P. Klingaman; Hilary Weller; Julia Slingo; Peter M. Inness

Abstract The northward-propagating intraseasonal (30–40 day) oscillation (NPISO) between active and break monsoon phases exerts a critical control on summer-season rainfall totals over India. Advances in diagnosing these events and comprehending the physical mechanisms behind them may hold the potential for improving their predictability. While previous studies have attempted to extract active and break events from reanalysis data to elucidate a composite life cycle, those studies have relied on first isolating the intraseasonal variability in the record (e.g., through bandpass filtering, removing harmonics, or empirical orthogonal function analysis). Additionally, the underlying physical processes that previous studies have proposed have varied, both among themselves and with studies using general circulation models. A simple index is defined for diagnosing NPISO events in observations and reanalysis, based on lag correlations between outgoing longwave radiation (OLR) over India and over the equatorial I...

Collaboration


Dive into the Hilary Weller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Lloyd

Institut de recherche pour le développement

View shared research outputs
Researchain Logo
Decentralizing Knowledge