Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hillary S. Hayden is active.

Publication


Featured researches published by Hillary S. Hayden.


Nature | 2008

Mapping and sequencing of structural variation from eight human genomes

Jeffrey M. Kidd; Gregory M. Cooper; William F. Donahue; Hillary S. Hayden; Nick Sampas; Tina Graves; Nancy F. Hansen; Brian Teague; Can Alkan; Francesca Antonacci; Eric Haugen; Troy Zerr; N. Alice Yamada; Peter Tsang; Tera L. Newman; Eray Tuzun; Ze Cheng; Heather M. Ebling; Nadeem Tusneem; Robert David; Will Gillett; Karen A. Phelps; Molly Weaver; David Saranga; Adrianne D. Brand; Wei Tao; Erik Gustafson; Kevin McKernan; Lin Chen; Maika Malig

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale—particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects.


Nature Genetics | 2005

Fine-scale structural variation of the human genome

Eray Tuzun; Andrew J. Sharp; Jeffrey A. Bailey; Rajinder Kaul; V. Anne Morrison; Lisa M. Pertz; Eric Haugen; Hillary S. Hayden; Donna G. Albertson; Daniel Pinkel; Maynard V. Olson; Evan E. Eichler

Inversions, deletions and insertions are important mediators of disease and disease susceptibility. We systematically compared the human genome reference sequence with a second genome (represented by fosmid paired-end sequences) to detect intermediate-sized structural variants >8 kb in length. We identified 297 sites of structural variation: 139 insertions, 102 deletions and 56 inversion breakpoints. Using combined literature, sequence and experimental analyses, we validated 112 of the structural variants, including several that are of biomedical relevance. These data provide a fine-scale structural variation map of the human genome and the requisite sequence precision for subsequent genetic studies of human disease.


European Journal of Phycology | 2003

Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera

Hillary S. Hayden; Jaanika Blomster; Christine A. Maggs; Paul C. Silva; Michael J. Stanhope; J. Robert Waaland

Ulva, one of the first Linnaean genera, was later circumscribed to consist of green seaweeds with distromatic blades, and Enteromorpha Link was established for tubular forms. Although several lines of evidence suggest that these generic constructs are artificial, Ulva and Enteromorpha have been maintained as separate genera. Our aims were to determine phylogenetic relationships among taxa currently attributed to Ulva, Enteromorpha, Umbraulva Bae et I.K. Lee and the monotypic genus Chloropelta C.E. Tanner, and to make any nomenclatural changes justified by our findings. Analyses of nuclear ribosomal internal transcribed spacer DNA (ITS nrONA) (29 ingroup taxa including the type species of Ulva and Enteromorphat, the chloroplast-encoded rbcL gene (for a subset of taxa) and a combined data set were carried out. All trees had a strongly supported clade consisting of all Ulva, Enteromorpha and Chloropelta species, but Ulva and Enteromorpha were not monophyletic. The recent removal of Vmbraulva olivascens (PJ.L. Dangeard) Bae et I.K. Lee from Ulvu is supported, although the relationship of the segregate genus Umhraulva to Ulvaria requires further investigation. These results, combined with earlier molecular and culture data, provide strong evidence that Ulva, Enteromorpha and Chloropelta are not distinct evolutionary entities and should not be recognized as separate genera. A comparison of traits for surveyed species revealed few synapomorphies. Because Ulva is the oldest name, Enteromorpha and Chloropclta are here reduced to synonymy with Ulva, and new combinations are made where necessary.


Bioinformatics | 2011

PGAT: a multistrain analysis resource for microbial genomes

M. Brittnacher; Christine Fong; Hillary S. Hayden; Michael A. Jacobs; Matthew Radey; Laurence Rohmer

Motivation: The Prokaryotic-genome Analysis Tool (PGAT) is a web-based database application for comparing gene content and sequence across multiple microbial genomes facilitating the discovery of genetic differences that may explain observed phenotypes. PGAT supports database queries to identify genes that are present or absent in user-selected genomes, comparison of sequence polymorphisms in sets of orthologous genes, multigenome display of regions surrounding a query gene, comparison of the distribution of genes in metabolic pathways and manual community annotation. Availability and Implementation:The PGAT website may be accessed at http://nwrce.org/pgat. Contact: [email protected]


Molecular Microbiology | 2007

Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients

David A. D'Argenio; Manhong Wu; Lucas R. Hoffman; Hemantha D. Kulasekara; Eric Déziel; Eric E. Smith; Hai Nguyen; Robert K. Ernst; Theodore Larson Freeman; David H. Spencer; M. Brittnacher; Hillary S. Hayden; Sara Selgrade; Mikkel Klausen; David R. Goodlett; Jane L. Burns; Bonnie W. Ramsey; Samuel I. Miller

The opportunistic pathogen Pseudomonas aeruginosa undergoes genetic change during chronic airway infection of cystic fibrosis (CF) patients. One common change is a mutation inactivating lasR, which encodes a transcriptional regulator that responds to a homoserine lactone signal to activate expression of acute virulence factors. Colonies of lasR mutants visibly accumulated the iridescent intercellular signal 4‐hydroxy‐2‐heptylquinoline. Using this colony phenotype, we identified P. aeruginosa lasR mutants that emerged in the airway of a CF patient early during chronic infection, and during growth in the laboratory on a rich medium. The lasR loss‐of‐function mutations in these strains conferred a growth advantage with particular carbon and nitrogen sources, including amino acids, in part due to increased expression of the catabolic pathway regulator CbrB. This growth phenotype could contribute to selection of lasR mutants both on rich medium and within the CF airway, supporting a key role for bacterial metabolic adaptation during chronic infection. Inactivation of lasR also resulted in increased β‐lactamase activity that increased tolerance to ceftazidime, a widely used β‐lactam antibiotic. Loss of LasR function may represent a marker of an early stage in chronic infection of the CF airway with clinical implications for antibiotic resistance and disease progression.


Genome Biology | 2007

Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

Laurence Rohmer; Christine Fong; Simone Abmayr; Michael Wasnick; Theodore Larson Freeman; Matthew Radey; Tina Guina; Kerstin Svensson; Hillary S. Hayden; Michael A. Jacobs; Larry A. Gallagher; Colin Manoil; Robert K. Ernst; Becky Drees; Danielle Buckley; Eric Haugen; Donald Bovee; Yang Zhou; Jean Chang; Ruth Levy; Regina Lim; Will Gillett; Don Guenthener; Allison Kang; Scott A. Shaffer; Greg Taylor; Jinzhi Chen; Byron Gallis; David A. D'Argenio; Mats Forsman

BackgroundFrancisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.ResultsComparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.ConclusionThe chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.


Cell | 2010

A Human Genome Structural Variation Sequencing Resource Reveals Insights into Mutational Mechanisms

Jeffrey M. Kidd; Tina Graves; Tera L. Newman; Robert S. Fulton; Hillary S. Hayden; Maika Malig; Joelle Kallicki; Rajinder Kaul; Richard Wilson; Evan E. Eichler

Understanding the prevailing mutational mechanisms responsible for human genome structural variation requires uniformity in the discovery of allelic variants and precision in terms of breakpoint delineation. We develop a resource based on capillary end sequencing of 13.8 million fosmid clones from 17 human genomes and characterize the complete sequence of 1054 large structural variants corresponding to 589 deletions, 384 insertions, and 81 inversions. We analyze the 2081 breakpoint junctions and infer potential mechanism of origin. Three mechanisms account for the bulk of germline structural variation: microhomology-mediated processes involving short (2-20 bp) stretches of sequence (28%), nonallelic homologous recombination (22%), and L1 retrotransposition (19%). The high quality and long-range continuity of the sequence reveals more complex mutational mechanisms, including repeat-mediated inversions and gene conversion, that are most often missed by other methods, such as comparative genomic hybridization, single nucleotide polymorphism microarrays, and next-generation sequencing.


Nature Methods | 2010

Characterization of missing human genome sequences and copy-number polymorphic insertions

Jeffrey M. Kidd; Nick Sampas; Francesca Antonacci; Tina Graves; Robert W Fulton; Hillary S. Hayden; Can Alkan; Maika Malig; Mario Ventura; Giuliana Giannuzzi; Joelle Kallicki; Paige Anderson; Anya Tsalenko; N. Alice Yamada; Peter Tsang; Rajinder Kaul; Richard Wilson; Laurakay Bruhn; Evan E. Eichler

The extent of human genomic structural variation suggests that there must be portions of the genome yet to be discovered, annotated and characterized at the sequence level. We present a resource and analysis of 2,363 new insertion sequences corresponding to 720 genomic loci. We found that a substantial fraction of these sequences are either missing, fragmented or misassigned when compared to recent de novo sequence assemblies from short-read next-generation sequence data. We determined that 18–37% of these new insertions are copy-number polymorphic, including loci that show extensive population stratification among Europeans, Asians and Africans. Complete sequencing of 156 of these insertions identified new exons and conserved noncoding sequences not yet represented in the reference genome. We developed a method to accurately genotype these new insertions by mapping next-generation sequencing datasets to the breakpoint, thereby providing a means to characterize copy-number status for regions previously inaccessible to single-nucleotide polymorphism microarrays.


Inflammatory Bowel Diseases | 2015

Fecal Microbial Transplant Effect on Clinical Outcomes and Fecal Microbiome in Active Crohn’s disease

David L. Suskind; M. Brittnacher; Ghassan Wahbeh; Michele L. Shaffer; Hillary S. Hayden; Xuan Qin; Namita Singh; Christopher J. Damman; Kyle R. Hager; Heather Nielson; Samuel I. Miller

Background:Crohns disease (CD) is a chronic idiopathic inflammatory intestinal disorder associated with fecal dysbiosis. Fecal microbial transplant (FMT) is a potential therapeutic option for individuals with CD based on the hypothesis that changing the fecal dysbiosis could promote less intestinal inflammation. Methods:Nine patients, aged 12 to 19 years, with mild-to-moderate symptoms defined by Pediatric Crohns Disease Activity Index (PCDAI of 10–29) were enrolled into a prospective open-label study of FMT in CD (FDA IND 14942). Patients received FMT by nasogastric tube with follow-up evaluations at 2, 6, and 12 weeks. PCDAI, C-reactive protein, and fecal calprotectin were evaluated at each study visit. Results:All reported adverse events were graded as mild except for 1 individual who reported moderate abdominal pain after FMT. All adverse events were self-limiting. Metagenomic evaluation of stool microbiome indicated evidence of FMT engraftment in 7 of 9 patients. The mean PCDAI score improved with patients having a baseline of 19.7 ± 7.2, with improvement at 2 weeks to 6.4 ± 6.6 and at 6 weeks to 8.6 ± 4.9. Based on PCDAI, 7 of 9 patients were in remission at 2 weeks and 5 of 9 patients who did not receive additional medical therapy were in remission at 6 and 12 weeks. No or modest improvement was seen in patients who did not engraft or whose microbiome was most similar to their donor. Conclusions:This is the first study to demonstrate that FMT for CD may be a possible therapeutic option for CD. Further prospective studies are required to fully assess the safety and efficacy of the FMT in patients with CD.


PLOS ONE | 2012

Evolution of Burkholderia pseudomallei in Recurrent Melioidosis

Hillary S. Hayden; Regina Lim; M. Brittnacher; Elizabeth H. Sims; Elizabeth Ramage; Christine Fong; Zaining Wu; Eva M Crist; Jean Chang; Yang Zhou; Matthew Radey; Laurence Rohmer; Eric Haugen; Will Gillett; Vanaporn Wuthiekanun; Sharon J. Peacock; Rajinder Kaul; Samuel I. Miller; Colin Manoil; Michael A. Jacobs

Burkholderia pseudomallei, the etiologic agent of human melioidosis, is capable of causing severe acute infection with overwhelming septicemia leading to death. A high rate of recurrent disease occurs in adult patients, most often due to recrudescence of the initial infecting strain. Pathogen persistence and evolution during such relapsing infections are not well understood. Bacterial cells present in the primary inoculum and in late infections may differ greatly, as has been observed in chronic disease, or they may be genetically similar. To test these alternative models, we conducted whole-genome comparisons of clonal primary and relapse B. pseudomallei isolates recovered six months to six years apart from four adult Thai patients. We found differences within each of the four pairs, and some, including a 330 Kb deletion, affected substantial portions of the genome. Many of the changes were associated with increased antibiotic resistance. We also found evidence of positive selection for deleterious mutations in a TetR family transcriptional regulator from a set of 107 additional B. pseudomallei strains. As part of the study, we sequenced to base-pair accuracy the genome of B. pseudomallei strain 1026b, the model used for genetic studies of B. pseudomallei pathogenesis and antibiotic resistance. Our findings provide new insights into pathogen evolution during long-term infections and have important implications for the development of intervention strategies to combat recurrent melioidosis.

Collaboration


Dive into the Hillary S. Hayden's collaboration.

Top Co-Authors

Avatar

M. Brittnacher

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew Radey

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Kyle R. Hager

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Haugen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Rajinder Kaul

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Eli Weiss

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jean Chang

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge