Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rajinder Kaul is active.

Publication


Featured researches published by Rajinder Kaul.


Science | 2012

Systematic Localization of Common Disease-Associated Variation in Regulatory DNA

Matthew T. Maurano; Richard Humbert; Eric Rynes; Robert E. Thurman; Eric Haugen; Hao Wang; Alex Reynolds; Richard Sandstrom; Hongzhu Qu; Jennifer A. Brody; Anthony Shafer; Fidencio Neri; Kristen Lee; Tanya Kutyavin; Sandra Stehling-Sun; Audra K. Johnson; Theresa K. Canfield; Erika Giste; Morgan Diegel; Daniel Bates; R. Scott Hansen; Shane Neph; Peter J. Sabo; Shelly Heimfeld; Antony Raubitschek; Steven F. Ziegler; Chris Cotsapas; Nona Sotoodehnia; Ian A. Glass; Shamil R. Sunyaev

Predictions of Genetic Disease Many genome-wide association studies (GWAS) have identified loci and variants associated with disease, but the ability to predict disease on the basis of these genetic variants remains small. Maurano et al. (p. 1190; see the Perspective by Schadt and Chang; see the cover) characterize the location of GWAS variants in the genome with respect to their proximity to regulatory DNA [marked by deoxyribonuclease I (DNase I) hypersensitive sites] by tissue type, disease, and enrichments in physiologically relevant transcription factor binding sites and networks. They found many noncoding disease associations in regulatory DNA, indicating tissue and developmental-specific regulatory roles for many common genetic variants and thus enabling links to be made between gene regulation and adult-onset disease. Genetic variants that have been associated with diseases are concentrated in regulatory regions of the genome. Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure–related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn’s disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.


Nature | 2012

The accessible chromatin landscape of the human genome.

Robert E. Thurman; Eric Rynes; Richard Humbert; Jeff Vierstra; Matthew T. Maurano; Eric Haugen; Nathan C. Sheffield; Andrew B. Stergachis; Hao Wang; Benjamin Vernot; Kavita Garg; Sam John; Richard Sandstrom; Daniel Bates; Lisa Boatman; Theresa K. Canfield; Morgan Diegel; Douglas Dunn; Abigail K. Ebersol; Tristan Frum; Erika Giste; Audra K. Johnson; Ericka M. Johnson; Tanya Kutyavin; Bryan R. Lajoie; Bum Kyu Lee; Kristen Lee; Darin London; Dimitra Lotakis; Shane Neph

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Nature | 2008

Mapping and sequencing of structural variation from eight human genomes

Jeffrey M. Kidd; Gregory M. Cooper; William F. Donahue; Hillary S. Hayden; Nick Sampas; Tina Graves; Nancy F. Hansen; Brian Teague; Can Alkan; Francesca Antonacci; Eric Haugen; Troy Zerr; N. Alice Yamada; Peter Tsang; Tera L. Newman; Eray Tuzun; Ze Cheng; Heather M. Ebling; Nadeem Tusneem; Robert David; Will Gillett; Karen A. Phelps; Molly Weaver; David Saranga; Adrianne D. Brand; Wei Tao; Erik Gustafson; Kevin McKernan; Lin Chen; Maika Malig

Genetic variation among individual humans occurs on many different scales, ranging from gross alterations in the human karyotype to single nucleotide changes. Here we explore variation on an intermediate scale—particularly insertions, deletions and inversions affecting from a few thousand to a few million base pairs. We employed a clone-based method to interrogate this intermediate structural variation in eight individuals of diverse geographic ancestry. Our analysis provides a comprehensive overview of the normal pattern of structural variation present in these genomes, refining the location of 1,695 structural variants. We find that 50% were seen in more than one individual and that nearly half lay outside regions of the genome previously described as structurally variant. We discover 525 new insertion sequences that are not present in the human reference genome and show that many of these are variable in copy number between individuals. Complete sequencing of 261 structural variants reveals considerable locus complexity and provides insights into the different mutational processes that have shaped the human genome. These data provide the first high-resolution sequence map of human structural variation—a standard for genotyping platforms and a prelude to future individual genome sequencing projects.


Nature Genetics | 2005

Fine-scale structural variation of the human genome

Eray Tuzun; Andrew J. Sharp; Jeffrey A. Bailey; Rajinder Kaul; V. Anne Morrison; Lisa M. Pertz; Eric Haugen; Hillary S. Hayden; Donna G. Albertson; Daniel Pinkel; Maynard V. Olson; Evan E. Eichler

Inversions, deletions and insertions are important mediators of disease and disease susceptibility. We systematically compared the human genome reference sequence with a second genome (represented by fosmid paired-end sequences) to detect intermediate-sized structural variants >8 kb in length. We identified 297 sites of structural variation: 139 insertions, 102 deletions and 56 inversion breakpoints. Using combined literature, sequence and experimental analyses, we validated 112 of the structural variants, including several that are of biomedical relevance. These data provide a fine-scale structural variation map of the human genome and the requisite sequence precision for subsequent genetic studies of human disease.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Comprehensive transposon mutant library of Pseudomonas aeruginosa

Michael A. Jacobs; Ashley Alwood; Iyarit Thaipisuttikul; David H. Spencer; Eric Haugen; Stephen Ernst; Oliver Will; Rajinder Kaul; Christopher K. Raymond; Ruth Levy; Liu Chun-Rong; Donald Guenthner; Donald Bovee; Maynard V. Olson; Colin Manoil

We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.


Nature | 2012

An expansive human regulatory lexicon encoded in transcription factor footprints

Shane Neph; Jeff Vierstra; Andrew B. Stergachis; Alex Reynolds; Eric Haugen; Benjamin Vernot; Robert E. Thurman; Sam John; Richard Sandstrom; Audra K. Johnson; Matthew T. Maurano; Richard Humbert; Eric Rynes; Hao Wang; Shinny Vong; Kristen Lee; Daniel Bates; Morgan Diegel; Vaughn Roach; Douglas Dunn; Jun Neri; Anthony Schafer; R. Scott Hansen; Tanya Kutyavin; Erika Giste; Molly Weaver; Theresa K. Canfield; Peter J. Sabo; Miaohua Zhang; Gayathri Balasundaram

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis–regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein–DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.


Genome Biology | 2012

An encyclopedia of mouse DNA elements (Mouse ENCODE)

John A. Stamatoyannopoulos; Michael Snyder; Ross C. Hardison; Bing Ren; Thomas R. Gingeras; David M. Gilbert; Mark Groudine; M. A. Bender; Rajinder Kaul; Theresa K. Canfield; Erica Giste; Audra K. Johnson; Mia Zhang; Gayathri Balasundaram; Rachel Byron; Vaughan Roach; Peter J. Sabo; Richard Sandstrom; A Sandra Stehling; Robert E. Thurman; Sherman M. Weissman; Philip Cayting; Manoj Hariharan; Jin Lian; Yong Cheng; Stephen G. Landt; Zhihai Ma; Barbara J. Wold; Job Dekker; Gregory E. Crawford

To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.


Genome Research | 2012

Widespread plasticity in CTCF occupancy linked to DNA methylation.

Hao Wang; Matthew T. Maurano; Hongzhu Qu; Katherine E. Varley; Jason Gertz; Florencia Pauli; Kristen Lee; Theresa K. Canfield; Molly Weaver; Richard Sandstrom; Robert E. Thurman; Rajinder Kaul; Richard M. Myers; John A. Stamatoyannopoulos

CTCF is a ubiquitously expressed regulator of fundamental genomic processes including transcription, intra- and interchromosomal interactions, and chromatin structure. Because of its critical role in genome function, CTCF binding patterns have long been assumed to be largely invariant across different cellular environments. Here we analyze genome-wide occupancy patterns of CTCF by ChIP-seq in 19 diverse human cell types, including normal primary cells and immortal lines. We observed highly reproducible yet surprisingly plastic genomic binding landscapes, indicative of strong cell-selective regulation of CTCF occupancy. Comparison with massively parallel bisulfite sequencing data indicates that 41% of variable CTCF binding is linked to differential DNA methylation, concentrated at two critical positions within the CTCF recognition sequence. Unexpectedly, CTCF binding patterns were markedly different in normal versus immortal cells, with the latter showing widespread disruption of CTCF binding associated with increased methylation. Strikingly, this disruption is accompanied by up-regulation of CTCF expression, with the result that both normal and immortal cells maintain the same average number of CTCF occupancy sites genome-wide. These results reveal a tight linkage between DNA methylation and the global occupancy patterns of a major sequence-specific regulatory factor.


Proceedings of the National Academy of Sciences of the United States of America | 2007

A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate

Larry A. Gallagher; Elizabeth Ramage; Michael A. Jacobs; Rajinder Kaul; M. Brittnacher; Colin Manoil

Francisella tularensis, the causative agent of tularemia, is one of the most infectious bacterial pathogens known and is a category A select agent. We created a sequence-defined, near-saturation transposon mutant library of F. tularensis novicida, a subspecies that causes a tularemia-like disease in rodents. The library consists of 16,508 unique insertions, an average of >9 insertions per gene, which is a coverage nearly twice that of the greatest previously achieved for any bacterial species. Insertions were recovered in 84% (1,490) of the predicted genes. To achieve high coverage, it was necessary to construct transposons carrying an endogenous Francisella promoter to drive expression of antibiotic resistance. An analysis of genes lacking (or with few) insertions identified nearly 400 candidate essential genes, most of which are likely to be required for growth on rich medium and which represent potential therapeutic targets. To facilitate genome-scale screening using the mutant collection, we assembled a sublibrary made up of two purified mutants per gene. The library provides a resource for virtually complete identification of genes involved in virulence and other nonessential processes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Foamy virus vector integration sites in normal human cells

Grant D. Trobridge; Daniel G. Miller; Michael A. Jacobs; James M. Allen; Hans Peter Kiem; Rajinder Kaul; David W. Russell

Foamy viruses (FVs) or spumaviruses are retroviruses that have been developed as vectors, but their integration patterns have not been described. We have performed a large-scale analysis of FV integration sites in unselected human fibroblasts (n = 1,008) and human CD34+ hematopoietic cells (n = 1,821) by using a bacterial shuttle vector and a comparable analysis of lentiviral vector integration sites in CD34+ cells (n = 1,331). FV vectors had a distinct integration profile relative to other types of retroviruses. They did not integrate preferentially within genes, despite a modest preference for integration near transcription start sites and a significant preference for CpG islands. The genomewide distribution of FV vector proviruses was nonrandom, with both clusters and gaps. Transcriptional profiling showed that gene expression had little influence on integration site selection. Our findings suggest that FV vectors may have desirable integration properties for gene therapy applications.

Collaboration


Dive into the Rajinder Kaul's collaboration.

Top Co-Authors

Avatar

Eric Haugen

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Reuben Matalon

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruth Levy

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Yang Zhou

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Jean Chang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Michals

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge