Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroaki Nishioka is active.

Publication


Featured researches published by Hiroaki Nishioka.


Publications of the Astronomical Society of Japan | 2006

A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey

Kazuhiro Yamamoto; Masashi Nakamichi; Akinari Kamino; Bruce A. Bassett; Hiroaki Nishioka

We report on a measurement of the quadrupole power spectrum in the two degree field (2dF) QSO redshift (2QZ) survey. The analysis used an algorithm parallel to that for estimating the standard monopole power spectrum without first requiring computation of the correlation function or the anisotropic power spectrum. The error on the quadrupole spectrum was rather large, but the best-fit value of the bias parameter from the quadrupole spectrum is consistent with that from previous investigations of the 2dF data.


The Astrophysical Journal | 2009

The AMiBA Hexapod Telescope Mount

Patrick M. Koch; M. J. Kesteven; Hiroaki Nishioka; Homin Jiang; Kai-Yang Lin; Keiichi Umetsu; Yau-De Huang; Philippe Raffin; Ke-Jung Chen; Fabiola Ibanez-Romano; Guillaume Chereau; Chih-Wei Locutus Huang; Ming-Tang Chen; Paul T. P. Ho; Konrad Pausch; Klaus Willmeroth; Pablo Altamirano; Chia-Hao Chang; Shu-Hao Chang; Su-Wei Chang; Chih-Chiang Han; Derek Kubo; Chao-Te Li; Yu-Wei Liao; Guo-Chin Liu; Pierre Martin-Cocher; Peter Oshiro; Fu-Cheng Wang; Tashun Wei; Jiun-Huei Proty Wu

The Array for Microwave Background Anisotropy (AMiBA) is the largest hexapod astronomical telescope in current operation. We present a description of this novel hexapod mount with its main mechanical components—the support cone, universal joints, jack screws, and platform—and outline the control system with the pointing model and the operating modes that are supported. The AMiBA hexapod mount performance is verified based on optical pointing tests and platform photogrammetry measurements. The photogrammetry results show that the deformations in the inner part of the platform are less than 120 μm rms. This is negligible for optical pointing corrections, radio alignment, and radio phase errors for the currently operational seven-element compact configuration. The optical pointing error in azimuth and elevation is successively reduced by a series of corrections to about 0 4 rms which meets our goal for the seven-element target specifications.


Radio Science | 2014

Greenland telescope project: Direct confirmation of black hole with sub‐millimeter VLBI

Makoto Inoue; J. C. Algaba-Marcos; Keiichi Asada; R. Blundell; W. Brisken; Roberto Burgos; Cha-Hao Chang; Ming-Tang Chen; Sheperd S. Doeleman; Vincent L. Fish; Paul K. Grimes; J. Han; Hiroyuki Hirashita; Paul T. P. Ho; S.-N. Hsieh; T. Huang; Homin Jiang; Eric Keto; Patrick M. Koch; Derek Kubo; Cheng-Yu Kuo; B. Liu; Pierre Martin-Cocher; Satoki Matsushita; Z. Meyer-Zhao; Masanori Nakamura; P. Napier; Hiroaki Nishioka; G. Nystrom; Scott N. Paine

A 12 m diameter radio telescope will be deployed to the Summit Station in Greenland to provide direct confirmation of a Super Massive Black Hole (SMBH) by observing its shadow image in the active galaxy M87. The telescope (Greenland Telescope: GLT) is to become one of the Very Long Baseline Interferometry (VLBI) stations at sub-millimeter (submm) regime, providing the longest baseline >9000 km to achieve an exceptional angular resolution of 20 µas at 350 GHz, which will enable us to resolve the shadow size of ~40 µas. The triangle with the longest baselines formed by the GLT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the Submillimeter Array (SMA) in Hawaii will play a key role for the M87 observations. We have been working on the image simulations based on realistic conditions for a better understanding of the possible observed images. In parallel, retrofitting of the telescope and the site developments are in progress. Based on 3 years of opacity monitoring at 225 GHz, our measurements indicate that the site is excellent for submm observations, comparable to the ALMA site. The GLT is also expected to make single-dish observations up to 1.5 THz.


The Astrophysical Journal | 2010

AMiBA WIDEBAND ANALOG CORRELATOR

Chao-Te Li; Derek Kubo; Warwick E. Wilson; Kai-Yang Lin; Ming-Tang Chen; Paul T. P. Ho; Chung-Cheng Chen; Chih-Chiang Han; Peter Oshiro; Pierre Martin-Cocher; Chia-Hao Chang; Shu-Hao Chang; Pablo Altamirano; Homin Jiang; Tzi-Dar Chiueh; Chun-Hsien Lien; Huei Wang; Ray-Ming Wei; Chia-Hsiang Yang; J. B. Peterson; Su-Wei Chang; Yau-De Huang; Yuh-Jing Hwang; M. J. Kesteven; Patrick M. Koch; Guo-Chin Liu; Hiroaki Nishioka; Keiichi Umetsu; Tashun Wei; Jiun-Huei Proty Wu

A wideband analog correlator has been constructed for the Yuan-Tseh Lee Array for Microwave Background Anisotropy. Lag correlators using analog multipliers provide large bandwidth and moderate frequency resolution. Broadband intermediate frequency distribution, back-end signal processing, and control are described. Operating conditions for optimum sensitivity and linearity are discussed. From observations, a large effective bandwidth of around 10 GHz has been shown to provide sufficient sensitivity for detecting cosmic microwave background variations.


Proceedings of SPIE | 2006

Progress of the array of microwave background anisotropy (AMiBA)

Philippe Raffin; Patrick M. Koch; Yau-De Huang; Chia-Hao Chang; Joshua Chang; Ming-Tang Chen; Ke-Yung Chen; Paul T. P. Ho; Chih-Wie Huang; Fabiola Ibañez Roman; Homin Jiang; M. J. Kesteven; Kai-Yang Lin; Guo-Chin Liu; Hiroaki Nishioka; Keiichi Umetsu

The Academia Sinica, Institute for Astronomy and Astrophysics (ASIAA) is installing the AMiBA interferometric array telescope at the Mauna Loa Observatory, Hawaii. The 6-meter carbon fiber fully steerable platform is mounted on the Hexapod Mount. After integration and equipment with dummy weights, the platform has been measured by photogrammetry to verify its behavior predicted by Finite Element Analysis. The Hexapod servo control is now operational and equipment of the platform with the initial 7 60-cm dishes, the correlator and electronics is underway. Pointing has started with the aid of the optical telescope. We present the status of the telescope after the servo and initial pointing tests have been carried out. We also present the results of platform measurements by photogrammetry.


Modern Physics Letters A | 2004

THE AMIBA PROJECT

Paul T. P. Ho; Ming-Tang Chen; Tzi-Dar Chiueh; Tzihong Chiueh; Tah-Hsiung Chu; Homin Jiang; Patrick M. Koch; Derek Kubo; Chao-Te Li; M. J. Kesteven; Kai-Yang Lin; Guo-Chin Liu; K. Y. Lo; Cheng-Jiun Ma; Robert N. Martin; Kin-Wang Ng; Hiroaki Nishioka; Ferdinand Patt; J. B. Peterson; Philippe Raffin; Huei Wang; Yuh-Jing Hwang; Keiichi Umetsu; Jiun-Huei Proty Wu

The Array for Microwave Background Anisotropy is a 7-element interferometer to be sited on Mauna Loa, Hawaii. The seven 1.2m telescopes are mounted on a 6-meter platform, and operates at 3mm wavelength. At the time of this meeting, the telescope is under construction at the Vertex factory in Germany. It is due to be delivered in the middle of 2004. A 2-element prototype instrument has already been deployed to Mauna Loa where initial tests are underway.


Publications of the Astronomical Society of the Pacific | 2018

The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths

L. D. Matthews; Geoffrey Crew; Shepherd S. Doeleman; Rich Lacasse; A. F. Saez; W. Alef; Kazunori Akiyama; R. Amestica; J. M. Anderson; D. Barkats; Alain Baudry; D. Broguiere; R. Escoffier; Vincent L. Fish; J. Greenberg; Michael H. Hecht; R. Hiriart; A. Hirota; Mareki Honma; Paul T. P. Ho; C. M. V. Impellizzeri; Makoto Inoue; Y. Kohno; B. Lopez; Ivan Marti-Vidal; Hugo Messias; Z. Meyer-Zhao; M. Mora-Klein; Neil M. Nagar; Hiroaki Nishioka

The Atacama Millimeter/submillimeter Array (ALMA) Phasing Project (APP) has developed and deployed the hardware and software necessary to coherently sum the signals of individual ALMA antennas and record the aggregate sum in Very Long Baseline Interferometry (VLBI) Data Exchange Format. These beamforming capabilities allow the ALMA array to collectively function as the equivalent of a single large aperture and participate in global VLBI arrays. The inclusion of phased ALMA in current VLBI networks operating at (sub) millimeter wavelengths provides an order of magnitude improvement in sensitivity, as well as enhancements in u–v coverage and north–south angular resolution. The availability of a phased ALMA enables a wide range of new ultra-high angular resolution science applications, including the resolution of supermassive black holes on event horizon scales and studies of the launch and collimation of astrophysical jets. It also provides a high-sensitivity aperture that may be used for investigations such as pulsar searches at high frequencies. This paper provides an overview of the ALMA Phasing System design, implementation, and performance characteristics.


Publications of the Astronomical Society of the Pacific | 2011

1.2 m Shielded Cassegrain Antenna for Close-Packed Radio Interferometer

Patrick M. Koch; Philippe Raffin; Yau-De Huang; Ming-Tang Chen; Chih-Chiang Han; Kai-Yang Lin; Pablo Altamirano; Christophe Granet; Paul T. P. Ho; Chih-Wei L. Huang; M. J. Kesteven; Chao-Te Li; Yu-Wei Liao; Guo-Chin Liu; Hiroaki Nishioka; Ching-Long Ong; Peter Oshiro; Keiichi Umetsu; Fu-Cheng Wang; Jiun-Huei Proty Wu

Interferometric millimeter observations of the cosmic microwave background and clusters of galaxies with arcminute resolutions require antenna arrays with short spacings. Having all antennas co-mounted on a single steerable platform sets limits to the overall weight. A 25 kg lightweight novel carbon-fiber design for a 1.2 m diameter Cassegrain antenna is presented. The finite element analysis predicts excellent structural behavior under gravity, wind, and thermal load. The primary- and secondary-mirror surfaces are aluminum-coated with a thin TiO2 top layer for protection. A low beam sidelobe level is achieved with a Gaussian feed-illumination pattern with edge taper, designed based on feed-horn antenna simulations and verified in a far-field beam-pattern measurement. A shielding baffle reduces interantenna coupling to below ~-135 dB. The overall antenna efficiency, including a series of efficiency factors, is estimated to be around 60%, with major losses coming from the feed spillover and secondary blocking. With this new antenna, a detection rate of about 50 clusters yr-1 is anticipated in a 13-element array operation.


Proceedings of SPIE | 2008

Platform deformation refined pointing and phase correction for the AMiBA hexapod telescope

Patrick M. Koch; M. J. Kesteven; Yu-Yen Chang; Yau-De Huang; Philippe Raffin; Ke-Yung Chen; Guillaume Chereau; Ming-Tang Chen; Paul T. P. Ho; Chih-Wie Huang; Fabiola Ibanez-Romano; Homin Jiang; Yu-Wei Liao; Kai-Yang Lin; Guo-Chin Liu; Sandor M. Molnar; Hiroaki Nishioka; Keiichi Umetsu; Fu-Cheng Wang; Jiun-Huei Proty Wu; Pablo Altamirano; Chia-Hao Chang; Shu-Hao Chang; Su-Wei Chang; Chi-Chiang Han; Derek Kubo; Chao-Te Li; Pierre Martin-Cocher; Peter Oshiro

The Array for Microwave Background Anisotropy (AMiBA) is a radio interferometer for research in cosmology, currently operating 7 0.6m diameter antennas co-mounted on a 6m diameter platform driven by a hexapod mount. AMiBA is currently the largest hexapod telescope. We briefly summarize the hexapod operation with the current pointing error model. We then focus on the upcoming 13-element expansion with its potential difficulties and solutions. Photogrammetry measurements of the platform reveal deformations at a level which can affect the optical pointing and the receiver radio phase. In order to prepare for the 13-element upgrade, two optical telescopes are installed on the platform to correlate optical pointing tests. Being mounted on different locations, the residuals of the two sets of pointing errors show a characteristic phase and amplitude difference as a function of the platform deformation pattern. These results depend on the telescopes azimuth, elevation and polarization position. An analytical model for the deformation is derived in order to separate the local deformation induced error from the real hexapod pointing error. Similarly, we demonstrate that the deformation induced radio phase error can be reliably modeled and calibrated, which allows us to recover the ideal synthesized beam in amplitude and shape of up to 90% or more. The resulting array efficiency and its limits are discussed based on the derived errors.


Proceedings of SPIE | 2016

The Greenland Telescope: antenna retrofit status and future plans

Philippe Raffin; Paul T. P. Ho; Keiichi Asada; Raymond Blundell; Geoffrey C. Bower; Roberto Burgos; Chih-Cheng Chang; Ming-Tang Chen; Robert D. Christensen; You-Hua Chu; Paul K. Grimes; Chih-Chiang Han; Chih-Wei L. Huang; Yau-De Huang; Fang-Chia Hsieh; Makoto Inoue; Patrick M. Koch; Derek Kubo; Steve Leiker; Lupin Lin; Ching-Tang Liu; Shih-Hsiang Lo; Pierre Martin-Cocher; Satoki Matsushita; Masanori Nakamura; Zheng Meyer-Zhao; Hiroaki Nishioka; Tim Norton; George Nystrom; Scott N. Paine

Since the ALMA North America Prototype Antenna was awarded to the Smithsonian Astrophysical Observatory (SAO), SAO and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) are working jointly to relocate the antenna to Greenland. This paper shows the status of the antenna retrofit and the work carried out after the recommissioning and subsequent disassembly of the antenna at the VLA has taken place. The next coming months will see the start of the antenna reassembly at Thule Air Base. These activities are expected to last until the fall of 2017 when commissioning should take place. In parallel, design, fabrication and testing of the last components are taking place in Taiwan.

Collaboration


Dive into the Hiroaki Nishioka's collaboration.

Top Co-Authors

Avatar

Paul T. P. Ho

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar

Patrick M. Koch

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Homin Jiang

Academia Sinica Institute of Astronomy and Astrophysics

View shared research outputs
Researchain Logo
Decentralizing Knowledge