Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirohisa Nagahori is active.

Publication


Featured researches published by Hirohisa Nagahori.


Toxicological Sciences | 2009

Mode of Action Analysis for the Synthetic Pyrethroid Metofluthrin-Induced Rat Liver Tumors: Evidence for Hepatic CYP2B Induction and Hepatocyte Proliferation

Yoshihito Deguchi; Tomoya Yamada; Yukihiro Hirose; Hirohisa Nagahori; Masahiko Kushida; Kayo Sumida; Tokuo Sukata; Yoshitaka Tomigahara; Satoshi Uwagawa; Satoshi Kawamura; Yasuyoshi Okuno

Two-year treatment with high doses of Metofluthrin produced hepatocellular tumors in both sexes of Wistar rats. To understand the mode of action (MOA) by which the tumors are produced, a series of studies examined the effects of Metofluthrin on hepatic microsomal cytochrome P450 (CYP) content, hepatocellular proliferation, hepatic gap junctional intercellular communication (GJIC), oxidative stress and apoptosis was conducted after one or two weeks of treatment. The global gene expression profile indicated that most genes with upregulated expression with Metofluthrin were metabolic enzymes that were also upregulated with phenobarbital. Metofluthrin induced CYP2B and increased liver weights associated with centrilobular hepatocyte hypertrophy (increased smooth endoplasmic reticulum [SER]), and induction of increased hepatocellular DNA replication. CYP2B1 mRNA induction by Metofluthrin was not observed in CAR knockdown rat hepatocytes using the RNA interference technique, demonstrating that Metofluthrin induces CYP2B1 through CAR activation. Metofluthrin also suppressed hepatic GJIC and induced oxidative stress and increased antioxidant enzymes, but showed no alteration in apoptosis. The above parameters related to the key events in Metofluthrin-induced liver tumors were observed at or below tumorigenic dose levels. All of these effects were reversible upon cessation of treatment. Metofluthrin did not cause cytotoxicity or peroxisome proliferation. Thus, it is highly likely that the MOA for Metofluthrin-induced liver tumors in rats is through CYP induction and increased hepatocyte proliferation, similar to that seen for phenobarbital. Based on analysis with the International Life Sciences Institute/Risk Science Institute MOA framework, it is reasonable to conclude that Metofluthrin will not have any hepatocarcinogenic activity in humans, at least at expected levels of exposure.


Toxicological Sciences | 2014

Human Hepatocytes Support The Hypertrophic But Not The Hyperplastic Response To The Murine Nongenotoxic Hepatocarcinogen Sodium Phenobarbital In An In Vivo Study Using A Chimeric Mouse With Humanized Liver

Tomoya Yamada; Yu Okuda; Masahiko Kushida; Kayo Sumida; Hayato Takeuchi; Hirohisa Nagahori; Takako Fukuda; Brian G. Lake; Samuel M. Cohen; Satoshi Kawamura

High doses of sodium phenobarbital (NaPB), a constitutive androstane receptor (CAR) activator, have been shown to produce hepatocellular tumors in rodents by a mitogenic mode of action (MOA) involving CAR activation. The effect of 1-week dietary treatment with NaPB on liver weight and histopathology, hepatic CYP2B enzyme activity and CYP2B/3A mRNA expression, replicative DNA synthesis and selected genes related to cell proliferation, and functional transcriptomic and metabolomic analyses was studied in male CD-1 mice, Wistar Hannover (WH) rats, and chimeric mice with human hepatocytes. The treatment of chimeric mice with 1000-1500-ppm NaPB resulted in plasma levels around 3-5-fold higher than those observed in human subjects given therapeutic doses of NaPB. NaPB produced dose-dependent increases in hepatic CYP2B activity and CYP2B/3A mRNA levels in all animal models. Integrated functional metabolomic and transcriptomic analyses demonstrated that the responses to NaPB in the human liver were clearly different from those in rodents. Although NaPB produced a dose-dependent increase in hepatocyte replicative DNA synthesis in CD-1 mice and WH rats, no increase in replicative DNA synthesis was observed in human hepatocyte-originated areas of chimeric mice. In addition, treatment with NaPB had no effect on Ki-67, PCNA, GADD45β, and MDM2 mRNA expression in chimeric mice, whereas significant increases were observed in CD-1 mice and/or WH rats. However, increases in hepatocyte replicative DNA synthesis were observed in chimeric mice both in vivo and in vitro after treatment epidermal growth factor. Thus, although NaPB could activate CAR in both rodent and human hepatocytes, NaPB did not increase replicative DNA synthesis in human hepatocytes of chimeric mice, whereas it was mitogenic to rat and mouse hepatocytes. As human hepatocytes are refractory to the mitogenic effects of NaPB, the MOA for NaPB-induced rodent liver tumor formation is thus not relevant for humans.


Journal of Toxicological Sciences | 2015

Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST): A novel rapid and highly reproducible in vitro test for embryotoxicity by measuring cytotoxicity and differentiation toxicity using engineered mouse ES cells

Florian Le Coz; Noriyuki Suzuki; Hirohisa Nagahori; Takashi Omori; Koichi Saito

The embryonic stem cell test (EST) is a promising alternative method for evaluating embryotoxicity of test chemicals by measuring cytotoxicity and differentiation toxicity using mouse ES cells. Differentiation toxicity is analyzed by microscopically counting the beating of embryonic bodies after 10 days of culture. However, improvements are necessary to reduce the laborious manipulations involved and the time required to obtain results. We have previously reported the successful stable transfection of ES cells (ES-D3) with the heart and neural crest derivatives expressed transcript 1 (Hand1) gene and the establishment of a 96-well multi-plate-based new EST with luciferase reporter assay 6 days after treatment with test chemicals. Now, we propose an even more rapid and easier EST, named Hand1-Luc EST. We established another cell line to monitor the Hand1 gene expression via a luciferase reporter gene. By mRNA analysis and luciferase assay, we examined in detail the luciferase activity during cell differentiation, which allowed us to reduce the time of measurement from day 6 to day 5 (120 hr). Furthermore, the protocol was improved, with, among others, the measurement of cytotoxicity and differentiation toxicity taking place in the same 96-well round bottom plate instead of two different plates. With the positive control, 5-fluorouracil (5-FU), and 9 test chemicals, data with high reproducibility and very low variation (CV < 50%) in the relevant endpoints were obtained. This study shows that the Hand1-Luc EST could provide an accurate and sensitive short-term test for prediction of embryotoxicants by measuring cytotoxicity and differentiation toxicity from the same sample.


Toxicology | 2001

Initial induction and subsequent reduction of α2u-globulin in urine and serum of mature male rats after repeated intraperitoneal injections of (anti)estrogen

Hirohisa Nagahori; Koichiro Komai; Yoshitaka Tomigahara; Koichi Saito; Naohiko Isobe; Hideo Kaneko

The influence of sex (anti)hormones on expression of alpha(2u)-globulin (a2uG) is complex and has not been sufficiently detailed. In order to assess the specificity of sex (anti)hormone action on a2uG expression and the utility of this approach as a sensitive screening method, mature male rats were given daily intraperitoneal injections of 17beta-estradiol (E2), dihydrotestosterone (DHT), tamoxifen (TX) and flutamide (FL) for 5 consecutive days. They were employed as representatives of estrogen, androgen, antiestrogen and antiandrogen categories, respectively. Urinary a2uG was specifically altered with E2 (1 microg/kg/day) and TX (50 mg/kg/day), but not by DHT (1 mg/kg/day) or FL (50 mg/kg/day). E2 and TX temporarily increased urinary a2uG on days 1 or 2, and days 2-4, respectively, followed by a return to the control level, and then a decrease with E2. The reduction in urinary a2uG on day 6 was more pronounced than the drop in serum a2uG. Serum hormone levels, and liver and testis weights were not remarkably altered with any treatment. Another strong xenoestrogen, diethylstilbestrol, also significantly reduced urinary and serum a2uG at 1 mg/kg/day on day 6. However, the other xenoestrogens (100 mg/kg/day of bisphenol A, nonylphenol, and dichlorodiphenyltrichloroethane, and 10 mg/kg/day of dieldrin) and phytoestrogens (10 mg/kg/day of genistein and daidzein) were without any appreciable influence. The results indicate that urinary a2uG is a sensitive indicator of estrogen action in mature male rats, with two different responses, initial induction and subsequent reduction.


Toxicological Sciences | 2017

Editor’s Highlight: Mode of Action Analysis for Rat Hepatocellular Tumors Produced by the Synthetic Pyrethroid Momfluorothrin: Evidence for Activation of the Constitutive Androstane Receptor and Mitogenicity in Rat Hepatocytes

Yu Okuda; Masahiko Kushida; Kayo Sumida; Hirohisa Nagahori; Yoshimasa Nakamura; Hashihiro Higuchi; Satoshi Kawamura; Brian G. Lake; Samuel M. Cohen; Tomoya Yamada

High dietary levels of momfluorothrin, a nongenotoxic synthetic pyrethroid, induced hepatocellular tumors in male and female Wistar rats in a 2-year bioassay. The mode of action (MOA) for rat hepatocellular tumors was postulated to occur via activation of the constitutive androstane receptor (CAR), as momfluorothrin is a close structural analogue of the pyrethroid metofluthrin, which is known to produce rat liver tumors through a CAR-mediated MOA. To elucidate the MOA for rat hepatocellular tumor formation by momfluorothrin, this study was conducted to examine effects on key and associative events of the CAR-mediated MOA for phenobarbital based on the International Programme on Chemical Safety framework. A 2-week in vivo study in Wistar rats revealed that momfluorothrin induced CYP2B activities, increased liver weights, produced hepatocyte hypertrophy and increased hepatocyte replicative DNA synthesis. These effects correlated with the dose-response relationship for liver tumor formation and also showed reversibility upon cessation of treatment. Moreover, momfluorothrin did not increase CYP2B1/2 mRNA expression and hepatocyte replicative DNA synthesis in CAR knockout rats. Using cultured Wistar rat hepatocytes and the RNA interference technique, knockdown of CAR resulted in a suppression of induction of CYP2B1/2 mRNA levels by momfluorothrin. Alternative MOAs for liver tumor formation were excluded. A global gene expression profile analysis of the liver of male Wistar rats treated with momfluorothrin for 2 weeks also showed similarity to the prototypic CAR activator phenobarbital. Overall, these data strongly support that the postulated MOA for momfluorothrin-induced rat hepatocellular tumors as being mediated by CAR activation.


Journal of Agricultural and Food Chemistry | 2015

Metabolism of (Z)-(1R,3R)-Profluthrin in Rats.

Jun Abe; Hirohisa Nagahori; Rie Omori; Kazuki Mikata; Motohiro Kurosawa; Yoshitaka Tomigahara; Naohiko Isobe

When [benzyl-α-(14)C]-labeled (Z)-(1R,3R)-profluthrin (2,3,5,6-tetrafluoro-4-methylbenzyl (Z)-(1R,3R)-2,2-dimethyl-3-(prop-1-enyl) cyclopropanecarboxylate, a newly developed pyrethroid) was administered orally to rats at 1 mg/kg, around 70% was absorbed, metabolized, and mainly excreted into urine within 48 h. Radioactivity in plasma reached Cmax at 6-8 h, and decreased (half-life; 37-52 h). A similar tendency was observed also in tissues. Absorption rate was slightly lower at high dose, while kinetics and distribution did not change. Eight metabolites were detected in urine and one in feces. Most of the (14)C in feces was unabsorbed (Z)-(1R,3R)-profluthrin. The main metabolic reactions were ester cleavage, hydroxylation of the methyl group on the C4-position of the benzene ring, and its glucuronidation or oxidation to carboxylic acid. Oxidation of the geminal dimethyl on the cyclopropane-C2 to carboxylic acid, oxidation followed by hydration of the propenyl double bond, and ω-oxidation to carboxylic acid and mercapturic acid conjugation of the benzyl alcohol were observed as minor reactions.


Drug Metabolism and Disposition | 2010

Metabolism of 2,6-Dichloro-4-(3,3-dichloroallyloxy)phenyl 3-[5-(trifluoromethyl)-2-pyridyloxy]propyl Ether (Pyridalyl) in Rats after Repeated Oral Administration and a Simple Physiologically Based Pharmacokinetic Modeling in Brown and White Adipose Tissues

Hirohisa Nagahori; Haruyuki Matsunaga; Yoshitaka Tomigahara; Naohiko Isobe; Hideo Kaneko

Male and female Sprague-Dawley rats received repeated oral administration of 14C-2,6-dichloro-4-(3,3-dichloroallyloxy)phenyl 3- [5-(trifluoromethyl)-2-pyridyloxy]propyl ether (14C-pyridalyl) at 5 mg/kg/day for 14 consecutive days, and 14C excretion, 14C concentration in tissues, and the metabolic fate were determined. Most 14C was excreted into feces. The 14C concentrations in the blood and tissues attained steady-state levels at days 6 to 10, whereas those in white adipose tissues increased until day 14. Tissue 14C concentrations were highest in brown and white adipose tissue (38.37–57.50 ppm) but were 5.60 ppm or less in all the other tissues. Total 14C residues in blood and tissues on the 27th day after the first administration accounted for 2.6 to 3.2% of the total dose. A major fecal metabolite resulted from O-dealkylation. Analysis of metabolites in tissues revealed that the majority of 14C in perirenal adipose tissue and lungs was pyridalyl, accounting for greater than 90 and 60%, respectively, of the total, whereas a major metabolite in whole blood, kidneys, and liver was a dehalogenated metabolite. The experimental data were simulated with simple physiologically based pharmacokinetics using four-compartment models with assumption of lymphatic absorption and membrane permeability in adipose tissues. The different kinetics in brown and white adipose tissues was reasonably predicted in this model, with large distribution volume in adipose tissues and high hepatic clearance in liver. Sex-related difference of pyridalyl concentration in liver was considered to be a result of different unbound fraction times the hepatic intrinsic clearance (f × CLint) of 1.8 and 12 l/h for male and female, respectively.


Journal of Agricultural and Food Chemistry | 2009

Metabolism of Pyridalyl in Rats: Excretion, Distribution, and Biotransformation of Dichloropropenyl-Labeled Pyridalyl

Hirohisa Nagahori; Yoshitaka Tomigahara; Naohiko Isobe; Hideo Kaneko

Metabolism of pyridalyl [2,6-dichloro-4-(3,3-dichloroallyloxy)phenyl 3-[5-(trifluoromethyl)-2-pyridyloxy]propyl ether] labeled at position 2 of the dichloropropenyl group with 14C was investigated after single oral administration to male and female rats at 5 and 500 mg/kg. Absorbed 14C was excreted into feces (68-79%), urine (8-14%), and expired air (6-10%) in all of the groups. Regarding 14C-tissue residues on the seventh day after administration, fat showed the highest levels at 0.98-2.34 ppm and 219-221 ppm with the low and high doses, respectively. 14C-Residues in other tissues accounted for 0.03-0.32 ppm at the low dose and 3-70 ppm at the high dose. The percentages of the 14C-residue in fat were 1.50-3.16% of the dose, and those of muscle and hair and skin were also relatively high, accounting for 0.49-1.20%. Total 14C-residues in the whole body were 2.95-6.80% of the dose. Fecal metabolites in male rats treated with 500 mg/kg pyridalyl were purified by a combination of chromatographic techniques, and chemical structures of 8 metabolites were identified by NMR and MS spectrometry. The biotransformation reactions in rats were proposed to be as follows: (1) epoxidation of the double bond in the dichloropropenyl group followed by hydration, dehydrochlorination, decarboxylation, and/or mercapturic acid conjugation; (2) CO2 formation after O-dealkylation of pyridalyl and its metabolites; (3) hydroxylation of C3 in the pyridyl ring; (4) O-dealkylation of the pyridyloxy and the trimethylene groups; (5) dehydrochlorination and hydration in the dichloropropenyl group.


Toxicology Letters | 2016

Prediction of in vivo developmental toxicity by combination of Hand1-Luc embryonic stem cell test and metabolic stability test with clarification of metabolically inapplicable candidates

Hirohisa Nagahori; Noriyuki Suzuki; Florian Le Coz; Takashi Omori; Koichi Saito

Hand1-Luc Embryonic Stem Cell Test (Hand1-Luc EST) is a promising alternative method for evaluation of developmental toxicity. However, the problems of predictivity have remained due to appropriateness of the solubility, metabolic system, and prediction model. Therefore, we assessed the usefulness of rat liver S9 metabolic stability test using LC-MS/MS to develop new prediction model. A total of 71 chemicals were analyzed by measuring cytotoxicity and differentiation toxicity, and highly reproducible (CV=20%) results were obtained. The first prediction model was developed by discriminant analysis performed on a full dataset using Hand1-Luc EST, and 66.2% of the chemicals were correctly classified by the cross-validated classification. A second model was developed with additional descriptors obtained from the metabolic stability test to calculate hepatic availability, and an accuracy of 83.3% was obtained with applicability domain of 50.7% (=36/71) after exclusion of 22 metabolically inapplicable candidates, which potentially have a metabolic activation property. A step-wise prediction scheme with combination of Hand1-Luc EST and metabolic stability test was therefore proposed. The current results provide a promising in vitro test method for accurately predicting in vivo developmental toxicity.


Drug Metabolism and Disposition | 2009

Metabolism of pyridalyl in rats.

Hirohisa Nagahori; Koichi Saito; Yoshitaka Tomigahara; Naohiko Isobe; Hideo Kaneko

Metabolism of pyridalyl [2,6-dichloro-4-(3,3-dichloroallyloxy)phenyl 3-[5-(trifluoromethyl)-2-pyridyloxy]propyl ether] was examined in male and female Sprague-Dawley rats. After a single oral administration of [dichlorophenyl-14C]pyridalyl at 5 or 500 mg/kg, the 14C concentration in blood reached maxima at 2 to 10 h and then decreased rapidly with a biological half-life of approximately 11 to 12 h. 14C concentrations in liver, fat, adrenal gland, and spleen were relatively high at a low dose, reaching 2.3 to 2.7, 1.9 to 2.3, 1.1 to 1.9, and 1.4 ppm, respectively, in these tissues at 2 to 24 h after administration. Although 14C elimination from fat and hair and skin was relatively slow compared with that from other tissues, the total residue on the 7th day was low, in the range of 1.3 to 2.3% of the dose. The 14C distribution in tissues with a high dose, as examined by whole-body autoradiography, was similar to that observed for the low dose. Results revealed that more than 88% of the dosed radiocarbon was excreted within 1 day after administration, with cumulative 14C excretion into urine and feces 7 days after administration of 1.7 to 2.6 and 98.7 to 101.7%, respectively. One urinary and fecal major metabolite (resulting from O-dealkylation) and two minor metabolites were identified by NMR and mass spectrometry. Residual 14C in fat was extracted, and analysis by thin-layer chromatography showed it to be due to pyridalyl itself. No marked sex-related differences were observed in 14C elimination, 14C distribution, and metabolites.

Collaboration


Dive into the Hirohisa Nagahori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge