Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hiroo Fukuda is active.

Publication


Featured researches published by Hiroo Fukuda.


Development | 2010

RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis.

Atsuko Kinoshita; Shigeyuki Betsuyaku; Yuriko Osakabe; Shinji Mizuno; Shingo Nagawa; Yvonne Stahl; Rüdiger Simon; Kazuko Yamaguchi-Shinozaki; Hiroo Fukuda; Shinichiro Sawa

The shoot apical meristem (SAM) is the fundamental structure that is located at the growing tip and gives rise to all aerial parts of plant tissues and organs, such as leaves, stems and flowers. In Arabidopsis thaliana, the CLAVATA3 (CLV3) pathway regulates the stem cell pool in the SAM, in which a small peptide ligand derived from CLV3 is perceived by two major receptor complexes, CLV1 and CLV2-CORYNE (CRN)/SUPPRESSOR OF LLP1 2 (SOL2), to restrict WUSCHEL (WUS) expression. In this study, we used the functional, synthetic CLV3 peptide (MCLV3) to isolate CLV3-insensitive mutants and revealed that a receptor-like kinase, RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2), also known as TOADSTOOL 2 (TOAD2), is another key regulator of meristem maintenance. Mutations in the RPK2 gene result in stem cell expansion and increased number of floral organs, as seen in the other clv mutants. These phenotypes are additive with both clv1 and clv2 mutations. Moreover, our biochemical analyses using Nicotiana benthamiana revealed that RPK2 forms homo-oligomers but does not associate with CLV1 or CLV2. These genetic and biochemical findings suggest that three major receptor complexes, RPK2 homomers, CLV1 homomers and CLV2-CRN/SOL2 heteromers, are likely to mediate three signalling pathways, mainly in parallel but with potential crosstalk, to regulate the SAM homeostasis.


The Plant Cell | 1997

Tracheary Element Differentiation.

Hiroo Fukuda

Vascular plants, which are adapted for life on land, first appeared in the late Silurian period, some 400 million years ago. Since then they have evolved to fill a diverse range of habitats all over the earth. The vascular systems of land plants are composed of specialized conducting tissues, the xylem and the phloem, which provide both a pathway for water and nutrient transport and mechanical support for slender plants. The vascular system is also an important conduit for signal-transducing molecules. Tracheary elements (TEs), which are the distinctive cells of the xylem, are characterized by the formation of a secondary cell wall with annular, spiral, reticulate, or pitted wall thickenings. In the primary xylem, TEs differentiate from procambial cells, whereas in the secondary xylem, they arise from cells produced by the vascular cambium. As they mature, TEs lose their nuclei and cell contents, leaving hollow dead cells that form vessels or tracheids. The final stage of TE differentiation represents a typical example of programmed cell death in higher plants (see Pennell and Lamb, 1997, in this issue). TEs can also be induced to form in vitro from various types of cells, including cells of the phloem parenchyma and the cortex in roots, the pith parenchyma in shoots, the tuber parenchyma, and the mesophyll and epidermis in leaves (Roberts et al., 1988; Fukuda, 1992). In Zinnia elegans cell cultures, single mesophyll cells transdifferentiate directly into TEs without cell division in response to phytohormones (Fukuda and Komamine, 1980). The Zinnia system has proven to be particularly useful for studies of the sequence of events during TE differentiation. This is largely because differentiation occurs at a high frequency in Zinnia cultures and because the process can be followed in single cells (Chasan, 1994; Fukuda, 1994, 1996). Recently, I presented a general overview of xylogenesis (Fukuda, 1996). In this article, I focus on efforts to elucidate the molecular mechanisms underlying the in vitro differentiation of parenchyma cells into TEs.


Nature Reviews Molecular Cell Biology | 2004

Signals that control plant vascular cell differentiation.

Hiroo Fukuda

Plant vascular cells originate from procambial cells, which are vascular stem cells. Recent studies with Zinnia elegans cell culture and Arabidopsis thaliana mutants indicate that intercellular-signalling molecules such as auxin, cytokinin, brassinosteroids and xylogen regulate the maintenance or differentiation of procambial cells through distinct intracellular-signal transduction and gene-expression machineries. This intercellular- and intracellular-signalling system might be involved in determining the continuity and pattern formation of vascular tissues.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Non-cell-autonomous control of vascular stem cell fate by a CLE peptide/receptor system

Yuki Hirakawa; Hidefumi Shinohara; Yuki Kondo; Asuka Inoue; Ikuko Nakanomyo; Mari Ogawa; Shinichiro Sawa; Kyoko Ohashi-Ito; Yoshikatsu Matsubayashi; Hiroo Fukuda

Land plants evolved a long-distance transport system of water and nutrients composed of the xylem and phloem, both of which are generated from the procambium- and cambium-comprising vascular stem cells. However, little is known about the molecular mechanism of cell communication governing xylem–phloem patterning. Here, we show that a dodecapeptide (HEVHypSGHypNPISN; Hyp, 4-hydroxyproline), TDIF (tracheary element differentiation inhibitory factor), is secreted from the phloem and suppresses the differentiation of vascular stem cells into xylem cells through a leucine-rich repeat receptor-like kinase (LRR-RLK). TDIF binds in vitro specifically to the LRR-RLK, designated TDR (putative TDIF receptor), whose expression is restricted to procambial cells. However, the combined analysis of TDIF with a specific antibody and the expression profiles of the promoters of two genes encoding TDIF revealed that TDIF is synthesized mainly in, and secreted from, the phloem and its neighboring cells. The observation that TDIF is capable of promoting proliferation of procambial cells while suppressing xylem differentiation suggests that this small peptide functions as a phloem-derived, non-cell-autonomous signal that controls stem cell fate in the procambium. Our results indicate that we have discovered a cell communication system governing phloem–xylem cross-talk.


Nature | 2004

A proteoglycan mediates inductive interaction during plant vascular development

Hiroyasu Motose; Munetaka Sugiyama; Hiroo Fukuda

Inductive cell–cell interactions are essential for controlling cell fate determination in both plants and animals; however, the chemical basis of inductive signals in plants remains little understood. A proteoglycan-like factor named xylogen mediates local and inductive cell–cell interactions required for xylem differentiation in Zinnia cells cultured in vitro. Here we describe the purification of xylogen and cloning of its complementary DNA, and present evidence for its role in planta. The polypeptide backbone of xylogen is a hybrid-type molecule with properties of both arabinogalactan proteins and nonspecific lipid-transfer proteins. Xylogen predominantly accumulates in the meristem, procambium and xylem. In the xylem, xylogen has a polar localization in the cell walls of differentiating tracheary elements. Double knockouts of Arabidopsis lacking both genes that encode xylogen proteins show defects in vascular development: discontinuous veins, improperly interconnected vessel elements and simplified venation. Our results suggest that the polar secretion of xylogen draws neighbouring cells into the pathway of vascular differentiation to direct continuous vascular development, thereby identifying a molecule that mediates an inductive cell–cell interaction involved in plant tissue differentiation.


Plant Molecular Biology | 2000

Programmed cell death of tracheary elements as a paradigm in plants

Hiroo Fukuda

Plant development involves various programmed cell death (PCD) processes. Among them, cell death occurring during differentiation of procambium into tracheary elements (TEs), which are a major component of vessels or tracheids, has been studied extensively. Recent studies of PCD during TE differentiation mainly using an in vitro differentiation system of Zinnia have revealed that PCD of TEs is a plant-specific one in which the vacuole plays a central role. Furthermore, there are recent findings of several factors that may initiate PCD of TEs and that act at autonomous degradation of cell contents. Herein I summarize the present knowledge about cell death program during TE differentiation as an excellent example of PCD in plants.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells

Taku Demura; Gen Tashiro; Gorou Horiguchi; Naoki Kishimoto; Minoru Kubo; Naoko Matsuoka; Atsushi Minami; Miyo Nagata-Hiwatashi; Keiko Nakamura; Yoshimichi Okamura; Naomi Sassa; Shinsuke Suzuki; Junshi Yazaki; Shoshi Kikuchi; Hiroo Fukuda

Plants have a unique transdifferentiation mechanism by which differentiated cells can initiate a new program of differentiation. We used a comprehensive analysis of gene expression in an in vitro zinnia (Zinnia elegans L.) culture model system to gather fundamental information about the gene regulation underlying the transdifferentiation of plant cells. In this model, photosynthetic mesophyll cells isolated from zinnia leaves transdifferentiate into xylem cells in a morphogenic process characterized by features such as secondary-wall formation and programmed cell death. More than 8,000 zinnia cDNA clones were isolated from an equalized cDNA library prepared from cultured cells transdifferentiating into xylem cells. Microarray analysis using these cDNAs revealed several types of unique gene regulation patterns, including: the transient expression of a set of genes during cell isolation, presumably induced by wounding; a rapid reduction in the expression of photosynthetic genes and the rapid induction of protein synthesis-associated genes during the first stage; the preferential induction of auxin-related genes during the subsequent stage; and the transient induction of genes closely associated with particular morphogenetic events, including cell-wall formation and degradation and programmed cell death during the final stage. This analysis also revealed a number of previously uncharacterized genes encoding proteins that function in signal transduction, such as protein kinases and transcription factors that are expressed in a stage-specific manner. These findings provide new clues to the molecular mechanisms of both plant transdifferentiation and wood formation.


The Plant Cell | 2010

TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis.

Yuki Hirakawa; Yuki Kondo; Hiroo Fukuda

This study shows that the TDIF signal from the phloem plays a crucial role in the maintenance of vascular stem cells via two independent pathways: WOX4-independent inhibition of xylem commitment of vascular stem cells and WOX4-mediated enhancement of their proliferation. The indeterminate nature of plant growth and development depends on the stem cell system found in meristems. The Arabidopsis thaliana vascular meristem includes procambium and cambium. In these tissues, cell–cell signaling, mediated by a ligand-receptor pair made of the TDIF (for tracheary element differentiation inhibitory factor) peptide and the TDR/PXY (for TDIF RECEPTOR/ PHLOEM INTERCALATED WITH XYLEM) membrane protein kinase, promotes proliferation of procambial cells and suppresses their xylem differentiation. Here, we report that a WUSCHEL-related HOMEOBOX gene, WOX4, is a key target of the TDIF signaling pathway. WOX4 is expressed preferentially in the procambium and cambium, and its expression level was upregulated upon application of TDIF in a TDR-dependent manner. Genetic analyses showed that WOX4 is required for promoting the proliferation of procambial/cambial stem cells but not for repressing their commitment to xylem differentiation in response to the TDIF signal. Thus, at least two intracellular signaling pathways that diverge after TDIF recognition by TDR might regulate independently the behavior of vascular stem cells. Detailed observations in loss-of-function mutants revealed that TDIF-TDR-WOX4 signaling plays a crucial role in the maintenance of the vascular meristem organization during secondary growth.


Journal of Integrative Plant Biology | 2013

The Plant Vascular System: Evolution, Development and Functions†

William J. Lucas; Andrew Groover; Raffael Lichtenberger; Kaori Furuta; Shri Ram Yadav; Ykä Helariutta; Xin-Qiang He; Hiroo Fukuda; Julie Kang; Siobhan M. Brady; John W. Patrick; John S. Sperry; Akiko Yoshida; Ana-Flor López-Millán; Michael A. Grusak; Pradeep Kachroo

The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essential functions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.


Plant Journal | 2008

VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots

Masatoshi Yamaguchi; Minoru Kubo; Hiroo Fukuda; Taku Demura

SUMMARY The Arabidopsis thaliana NAC domain transcription factor, vascular-related NAC-DOMAIN7 (VND7), plays a pivotal role in regulating the differentiation of root protoxylem vessels. In order to understand the mechanisms underscoring the function of VND7 in vessel differentiation in more detail, we conducted extensive molecular analyses in yeast (Saccharomyces cerevisiae), Arabidopsis, and Nicotiana tabacum L. cv. Bright Yellow 2 (tobacco BY-2) cells. The transcriptional activation activity of VND7 was confirmed in yeast and Arabidopsis, and the C-terminal region was shown to be required for VND7 transcriptional activation. Expression of the C-terminus-truncated VND7 protein under the control of the native VND7 promoter resulted in inhibition of the normal development of metaxylem vessels in roots and vessels in aerial organs, as well as protoxylem vessels in roots. The expression pattern of VND7 overlapped that of VND2 to VND5 in most of the differentiating vessels. Furthermore, a yeast two-hybrid assay revealed the ability of VND7 to form homodimers and heterodimers with other VND proteins via their N-termini, which include the NAC domain. The heterologous expression of VND7 in tobacco BY-2 cells demonstrated that the stability of VND7 could be regulated by proteasome-mediated degradation. Together these data suggest that VND7 regulates the differentiation of all types of vessels in roots and shoots, possibly in cooperation with VND2 to VND5 and other regulatory proteins.

Collaboration


Dive into the Hiroo Fukuda's collaboration.

Top Co-Authors

Avatar

Taku Demura

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshihisa Oda

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge