Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yoshihisa Oda is active.

Publication


Featured researches published by Yoshihisa Oda.


The Plant Cell | 2010

Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 Directly Regulates the Genes That Govern Programmed Cell Death and Secondary Wall Formation during Xylem Differentiation

Kyoko Ohashi-Ito; Yoshihisa Oda; Hiroo Fukuda

This article reports the identification of the downstream genes regulated by a master regulator of differentiation of tracheary elements, VND6, and of xylem fibers, SND1. VND6 was found to directly regulate several genes involved in programmed cell death and secondary cell wall formation through binding to a specific cis-element. Xylem consists of three types of cells: tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanisms underlying these processes. Here, we show that VASCULAR-RELATED NAC-DOMAIN6 (VND6), a master regulator of TEs, regulates some of the downstream genes involved in these processes in a coordinated manner. We first identified genes that are expressed downstream of VND6 but not downstream of SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, using transformed suspension culture cells in microarray experiments. We found that VND6 and SND1 governed distinct aspects of xylem formation, whereas they regulated a number of genes in common, specifically those related to secondary cell wall formation. Genes involved in TE-specific PCD were upregulated only by VND6. Moreover, we revealed that VND6 directly regulated genes that harbor a TE-specific cis-element, TERE, in their promoters. Thus, we found that VND6 is a direct regulator of genes related to PCD as well as to secondary wall formation.


Science | 2012

Initiation of Cell Wall Pattern by a Rho- and Microtubule-Driven Symmetry Breaking

Yoshihisa Oda; Hiroo Fukuda

Its the Pits Cellular shape is tied to the cytoskeleton, with specialized regions of the plasma membrane attracting or repelling microtubules, a process mediated by the microtubule binding protein MIDD1. In plants, individual xylem cells are peppered with open pits that facilitate fluid transport and so Oda and Fukuda (p. 1333) studied ROP “Rho family guanosine triphosphatases of plants” proteins from xylem cells to investigate how pits develop. Formation of the pits seems to depend on MIDD1 to destabilize the microtubules at that point. A cascade of ROP proteins establishes the point at which MIDD1 functions, and reverse inhibition of one of the ROP proteins keeps the pit formation focused on a point. A Rho guanosine triphosphatase–based regulatory mechanism reveals how plants remodel membranes and cell walls to produce various cell shapes. A specifically patterned cell wall is a determinant of plant cell shape. Yet, the precise mechanisms that underlie initiation of cell wall patterning remain elusive. By using a reconstitution assay, we revealed that ROPGEF4 (Rho of plant guanine nucleotide exchange factor 4) and ROPGAP3 [ROP guanosine triphosphatase (GTPase)–activating protein 3] mediate local activation of the plant Rho GTPase ROP11 to initiate distinct pattern of secondary cell walls in xylem cells. The activated ROP11 recruits MIDD1 to induce local disassembly of cortical microtubules. Conversely, cortical microtubules eliminate active ROP11 from the plasma membrane through MIDD1. Such a mutual inhibitory interaction between active ROP domains and cortical microtubules establishes the distinct pattern of secondary cell walls. This Rho-based regulatory mechanism shows how plant cells initiate and control cell wall patterns to form various cell shapes.


Plant Physiology | 2005

Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions.

Yoshihisa Oda; Tetsuro Mimura; Seiichiro Hasezawa

Cortical microtubules participate in the deposition of patterned secondary walls in tracheary element differentiation. In this study, we established a system to induce the differentiation of tracheary elements using a transgenic Arabidopsis (Arabidopsis thaliana) cell suspension stably expressing a green fluorescent protein-tubulin fusion protein. Approximately 30% of the cells differentiated into tracheary elements 96 h after culture in auxin-free media containing 1 μm brassinolide. With this differentiation system, we have been able to time-sequentially elucidate microtubule arrangement during secondary wall thickening. The development of secondary walls could be followed in living cells by staining with fluorescein-conjugated wheat germ agglutinin, and the three-dimensional structures of the secondary walls could be simultaneously analyzed. A single microtubule bundle first appeared beneath the narrow secondary wall and then developed into two separate bundles locating along both sides of the developing secondary wall. Microtubule inhibitors affected secondary wall thickening, suggesting that the pair of microtubule bundles adjacent to the secondary wall played a crucial role in the regulation of secondary wall development.


Current Biology | 2010

Wood Cell-Wall Structure Requires Local 2D-Microtubule Disassembly by a Novel Plasma Membrane-Anchored Protein

Yoshihisa Oda; Yuki Iida; Yuki Kondo; Hiroo Fukuda

Plant cells have evolved cortical microtubules, in a two-dimensional space beneath the plasma membrane, that regulate patterning of cellulose deposition. Although recent studies have revealed that several microtubule-associated proteins facilitate self-organization of transverse cortical microtubules, it is still unknown how diverse patterns of cortical microtubules are organized in different xylem cells, which are the major components of wood. Using our newly established in vitro xylem cell differentiation system, we found that a novel microtubule end-tracking protein, microtubule depletion domain 1 (MIDD1), was anchored to distinct plasma membrane domains and promoted local microtubule disassembly, resulting in pits on xylem cell walls. The introduction of RNA interference for MIDD1 resulted in the failure of local microtubule depletion and the formation of secondary walls without pits. Conversely, the overexpression of MIDD1 reduced microtubule density. MIDD1 has two coiled-coil domains for the binding to microtubules and for the anchorage to plasma membrane domains, respectively. Combination of the two coils caused end tracking of microtubules during shrinkage and suppressed their rescue events. Our results indicate that MIDD1 integrates spatial information in the plasma membrane with cortical microtubule dynamics for determining xylem cell wall pattern.


Plant Journal | 2011

Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping

Yoshihisa Oda; Hiroo Fukuda

The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex.


Plant and Cell Physiology | 2009

Dynamic Aspects of Ion Accumulation by Vesicle Traffic Under Salt Stress in Arabidopsis

Kohei Hamaji; Megumi Nagira; Katsuhisa Yoshida; Miwa Ohnishi; Yoshihisa Oda; Tomohiro Uemura; Tatsuaki Goh; Masa H. Sato; Miyo Terao Morita; Masao Tasaka; Seiichiro Hasezawa; Akihiko Nakano; Ikuko Hara-Nishimura; Masayoshi Maeshima; Hidehiro Fukaki; Tetsuro Mimura

The intracellular membrane dynamics of Arabidopsis cells under high salt treatment were investigated. When Arabidopsis was treated with high levels of NaCl in hydroponic culture, root tip cells showed rapid changes in the vacuolar volume, a decrease in the number of small acid compartments, active movement of vesicles and accumulation of Na(+) both in the central vacuole and in the vesicles around the main vacuole observed with the Na(+)-dependent fluorescence of Sodium Green. Detailed observation of Arabidopsis suspension-cultured cells under high salt treatment showed a similar pattern of response to that observed in root tip cells. Immunostaining of suspension-cultured cells with antibodies against AtNHX1 clearly showed the occurrence of dotted fluorescence in the cytoplasm only under salt treatment. We also confirmed the existence of AtNHX1 in the vacuolar membrane isolated from suspension-cultured cells with immunofluorescence. Knockout of the vacuolar Q(a)-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein VAM3/SYP22 caused an increase in salt tolerance. In mutant plants, the distribution of Na(+) between roots and shoots differed from that of wild-type plants, with Na(+) accumulating more in roots and less in the shoots of the mutant plants. The role of vesicle traffic under salt stress is discussed.


Current Opinion in Plant Biology | 2012

Secondary cell wall patterning during xylem differentiation

Yoshihisa Oda; Hiroo Fukuda

Xylem cell differentiation involves temporal and spatial regulation of secondary cell wall deposition. The cortical microtubules are known to regulate the spatial pattern of the secondary cell wall by orientating cellulose deposition. However, it is largely unknown how the microtubule arrangement is regulated during secondary wall formation. Recent findings of novel plant microtubule-associated proteins in developing xylem vessels shed new light on the regulation mechanism of the microtubule arrangement leading to secondary wall patterning. In addition, in vitro culture systems allow the dynamics of microtubules and microtubule-associated proteins during secondary cell wall formation to be followed. Therefore, this review focuses on novel aspects of microtubule dynamics leading to secondary cell wall patterning with a focus on microtubule-associated proteins.


Plant Journal | 2012

The proteasome is responsible for caspase‐3‐like activity during xylem development

Jia-Jia Han; Wei Lin; Yoshihisa Oda; Ke-Ming Cui; Hiroo Fukuda; Xin-Qiang He

Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.


The Plant Cell | 2013

Rho of Plant GTPase Signaling Regulates the Behavior of Arabidopsis Kinesin-13A to Establish Secondary Cell Wall Patterns

Yoshihisa Oda; Hiroo Fukuda

Kinesin-13A is a microtubule depolymerizing protein and is required for formation of secondary wall pit in metaxylem vessels. Kinesin-13A promotes local disassembly of cortical microtubules through Rho of Plant GTPase-MIDD1 complex to develop secondary wall pits. This study demonstrates that a pathway regulates cell wall structure through local regulation of cortical microtubule dynamics. Plant cortical microtubule arrays determine the cell wall deposition pattern and proper cell shape and function. Although various microtubule-associated proteins regulate the cortical microtubule array, the mechanisms underlying marked rearrangement of cortical microtubules during xylem differentiation are not fully understood. Here, we show that local Rho of Plant (ROP) GTPase signaling targets an Arabidopsis thaliana kinesin-13 protein, Kinesin-13A, to cortical microtubules to establish distinct patterns of secondary cell wall formation in xylem cells. Kinesin-13A was preferentially localized with cortical microtubules in secondary cell wall pits, areas where cortical microtubules are depolymerized to prevent cell wall deposition. This localization of Kinesin-13A required the presence of the activated ROP GTPase, MICROTUBULE DEPLETION DOMAIN1 (MIDD1) protein, and cortical microtubules. Knockdown of Kinesin-13A resulted in the formation of smaller secondary wall pits, while overexpression of Kinesin-13A enlarged their surface area. Kinesin-13A alone could depolymerize microtubules in vitro; however, both MIDD1 and Kinesin-13A were required for the depolymerization of cortical microtubules in vivo. These results indicate that Kinesin-13A regulates the formation of secondary wall pits by promoting cortical microtubule depolymerization via the ROP-MIDD1 pathway.


Journal of Plant Research | 2006

Cytoskeletal organization during xylem cell differentiation

Yoshihisa Oda; Seiichiro Hasezawa

The water and mineral conductive tube, the xylem vessel and tracheid, is a highly conspicuous tissue due to its elaborately patterned secondary-wall deposition. One constituent of the xylem vessel and tracheid, the tracheary element, is an empty dead cell that develops secondary walls in the elaborate patterns. The wall pattern is appropriately regulated according to the developmental stage of the plant. The cytoskeleton is an essential component of this regulation. In fact, the cortical microtubule is well known to participate in patterned secondary cell wall formation. The dynamic rearrangement of the microtubules and actin filaments have also been recognized in the cultured cells differentiating into tracheary elements in vitro. There has recently been considerable progress in our understanding of the dynamics and regulation of cortical microtubules, and several plant microtubule associated proteins have been identified and characterized. The microtubules have been observed during tracheary element differentiation in living Arabidopsis thaliana cells. Based on this recently acquired information on the plant cytoskeleton and tracheary element differentiation, this review discusses the role of the cytoskeleton in secondary cell wall formation.

Collaboration


Dive into the Yoshihisa Oda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takema Sasaki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge