Hiroshi Ishikita
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroshi Ishikita.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Frank Müh; Mohamed Madjet; Julia Adolphs; Ayjamal Abdurahman; Björn Rabenstein; Hiroshi Ishikita; Ernst-Walter Knapp; Thomas Renger
In photosynthesis, light is captured by antenna proteins. These proteins transfer the excitation energy with almost 100% quantum efficiency to the reaction centers, where charge separation takes place. The time scale and pathways of this transfer are controlled by the protein scaffold, which holds the pigments at optimal geometry and tunes their excitation energies (site energies). The detailed understanding of the tuning of site energies by the protein has been an unsolved problem since the first high-resolution crystal structure of a light-harvesting antenna appeared >30 years ago [Fenna RE, Matthews BW (1975) Nature 258:573–577]. Here, we present a combined quantum chemical/electrostatic approach to compute site energies that considers the whole protein in atomic detail and provides the missing link between crystallography and spectroscopy. The calculation of site energies of the Fenna–Matthews–Olson protein results in optical spectra that are in quantitative agreement with experiment and reveals an unexpectedly strong influence of the backbone of two α-helices. The electric field from the latter defines the direction of excitation energy flow in the Fenna–Matthews–Olson protein, whereas the effects of amino acid side chains, hitherto thought to be crucial, largely compensate each other. This result challenges the current view of how energy flow is regulated in pigment–protein complexes and demonstrates that attention has to be paid to the backbone architecture.
Journal of Biological Chemistry | 2003
Hiroshi Ishikita; Ernst-Walter Knapp
The redox potentials of the two electron transfer (ET) active quinones in the central part of photosystem I (PSI) were determined by evaluating the electrostatic energies from the solution of the Poisson-Boltzmann equation based on the crystal structure. The calculated redox potentials are -531 mV for A1A and -686 mV for A1B. From these results we conclude the following. (i) Both branches are active with a much faster ET in the B-branch than in the A-branch. (ii) The measured lifetime of 200-290 ns of reduced quinones agrees with the estimate for the A-branch and corroborates with an uphill ET from this quinone to the iron-sulfur cluster as observed in recent kinetic measurements. (iii) The electron paramagnetic resonance spectroscopic data refer to the A-branch quinone where the corresponding ET is uphill in energy. The negative redox potential of A1 in PSI is primarily because of the influence from the negatively charged FX, in contrast to the positive shift on the quinone redox potential in bacterial reaction center and PSII that is attributed to the positively charged non-heme iron atom. The conserved residue Asp-B575 changes its protonation state after quinone reduction. The difference of 155 mV in the quinone redox potentials of the two branches were attributed to the conformation of the backbone with a large contribution from Ser-A692 and Ser-B672 and to the side chain of Asp-B575, whose protonation state couples differently with the formation of the quinone radicals.
Biochemistry | 2011
Keisuke Saito; Jian Ren Shen; Toyokazu Ishida; Hiroshi Ishikita
The crystal structure of photosystem II (PSII) analyzed at a resolution of 1.9 Å revealed a remarkably short H-bond between redox-active tyrosine Y(Z) and D1-His190 (2.46 Å donor-acceptor distance). Using large-scale quantum mechanical/molecular mechanical (QM/MM) calculations with the explicit PSII protein environment, we were able to reproduce this remarkably short H-bond in the original geometry of the crystal structure in the neutral [Y(Z)O···H···N(ε)-His-N(δ)H···O═Asn] state, but not in the oxidized states, indicating that the neutral state was the one observed in the crystal structure. In addition to the appropriate redox/protonation state of Y(Z) and D1-His190, we found that the presence of a cluster of water molecules played a key role in shortening the distance between Y(Z) and D1-His190. The orientations of the water molecules in the cluster were energetically stabilized by the highly polarized PSII protein environment, where the Ca ion of the oxygen-evolving complex (OEC) and the OEC ligand D1-Glu189 were also involved.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Keisuke Saito; A. William Rutherford; Hiroshi Ishikita
Photosystem II uses light to drive water oxidation and plastoquinone (PQ) reduction. PQ reduction involves two PQ cofactors, QA and QB, working in series. QA is a one-electron carrier, whereas QB undergoes sequential reduction and protonation to form QBH2. QBH2 exchanges with PQ from the pool in the membrane. Based on the atomic coordinates of the Photosystem II crystal structure, we analyzed the proton transfer (PT) energetics adopting a quantum mechanical/molecular mechanical approach. The potential-energy profile suggests that the initial PT to QB•– occurs from the protonated, D1-His252 to QB•– via D1-Ser264. The second PT is likely to occur from D1-His215 to QBH− via an H-bond with an energy profile with a single well, resulting in the formation of QBH2 and the D1-His215 anion. The pathway for reprotonation of D1-His215– may involve bicarbonate, D1-Tyr246 and water in the QB site. Formate ligation to Fe2+ did not significantly affect the protonation of reduced QB, suggesting that formate inhibits QBH2 release rather than its formation. The presence of carbonate rather than bicarbonate seems unlikely because the calculations showed that this greatly perturbed the potential of the nonheme iron, stabilizing the Fe3+ state in the presence of QB•–, a situation not encountered experimentally. H-bonding from D1-Tyr246 and D2-Tyr244 to the bicarbonate ligand of the nonheme iron contributes to the stability of the semiquinones. A detailed mechanistic model for QB reduction is presented.
Journal of the Royal Society Interface | 2013
Hiroshi Ishikita; Keisuke Saito
In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein–protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.
Journal of the American Chemical Society | 2011
Keisuke Saito; Toyokazu Ishida; Miwa Sugiura; Keisuke Kawakami; Y. Umena; Nobuo Kamiya; Jian Ren Shen; Hiroshi Ishikita
The reaction center chlorophylls a (Chla) of photosystem II (PSII) are composed of six Chla molecules including the special pair Chla P(D1)/P(D2) harbored by the D1/D2 heterodimer. They serve as the ultimate electron abstractors for water oxidation in the oxygen-evolving Mn(4)CaO(5) cluster. Using the PSII crystal structure analyzed at 1.9 Å resolution, the redox potentials of P(D1)/P(D2) for one-electron oxidation (E(m)) were calculated by considering all PSII subunits and the protonation pattern of all titratable residues. The E(m)(Chla) values were calculated to be 1015-1132 mV for P(D1) and 1141-1201 mV for P(D2), depending on the protonation state of the Mn(4)CaO(5) cluster. The results showed that E(m)(P(D1)) was lower than E(m)(P(D2)), favoring localization of the charge of the cationic state more on P(D1). The P(D1)(•+)/P(D2)(•+) charge ratio determined by the large-scale QM/MM calculations with the explicit PSII protein environment yielded a P(D1)(•+)/P(D2)(•+) ratio of ~80/~20, which was found to be due to the asymmetry in electrostatic characters of several conserved D1/D2 residue pairs that cause the E(m)(P(D1))/E(m)(P(D2)) difference, e.g., D1-Asn181/D2-Arg180, D1-Asn298/D2-Arg294, D1-Asp61/D2-His61, D1-Glu189/D2-Phe188, and D1-Asp170/D2-Phe169. The larger P(D1)(•+) population than P(D2)(•+) appears to be an inevitable fate of the intact PSII that possesses water oxidation activity.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Keisuke Saito; Hiroshi Ishikita
Recent neutron diffraction studies of photoactive yellow protein (PYP) proposed that the H bond between protonated Glu46 and the chromophore [ionized p-coumaric acid (pCA)] was a low-barrier H bond (LBHB). Using the atomic coordinates of the high-resolution crystal structure, we analyzed the energetics of the short H bond by two independent methods: electrostatic pKa calculations and a quantum mechanical/molecular mechanical (QM/MM) approach. (i) In the QM/MM optimized geometry, we reproduced the two short H-bond distances of the crystal structure: Tyr42-pCA (2.50 Å) and Glu46-pCA (2.57 Å). However, the H atoms obviously belonged to the Tyr or Glu moieties, and were not near the midpoint of the donor and acceptor atoms. (ii) The potential-energy curves of the two H bonds resembled those of standard asymmetric double-well potentials, which differ from those of LBHB. (iii) The calculated pKa values for Glu46 and pCA were 8.6 and 5.4, respectively. The pKa difference was unlikely to satisfy the prerequisite for LBHB. (iv) The LBHB in PYP was originally proposed to stabilize the ionized pCA because deprotonated Arg52 cannot stabilize it. However, the calculated pKa of Arg52 and QM/MM optimized geometry suggested that Arg52 was protonated on the protein surface. The short H bond between Glu46 and ionized pCA in the PYP ground state could be simply explained by electrostatic stabilization without invoking LBHB.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Keisuke Saito; A. William Rutherford; Hiroshi Ishikita
Using quantum mechanics/molecular mechanics calculations and the 1.9-Å crystal structure of Photosystem II [Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473(7345):55–60], we investigated the H-bonding environment of the redox-active tyrosine D (TyrD) and obtained insights that help explain its slow redox kinetics and the stability of TyrD•. The water molecule distal to TyrD, located ∼4 Å away from the phenolic O of TyrD, corresponds to the presence of the tyrosyl radical state. The water molecule proximal to TyrD, in H-bonding distance to the phenolic O of TyrD, corresponds to the presence of the unoxidized tyrosine. The H+ released on oxidation of TyrD is transferred to the proximal water, which shifts to the distal position, triggering a concerted proton transfer pathway involving D2-Arg180 and a series of waters, through which the proton reaches the aqueous phase at D2-His61. The water movement linked to the ejection of the proton from the hydrophobic environment near TyrD makes oxidation slow and quasiirreversible, explaining the great stability of the TyrD•. A symmetry-related proton pathway associated with tyrosine Z is pointed out, and this is associated with one of the Cl− sites. This may represent a proton pathway functional in the water oxidation cycle.
Journal of the American Chemical Society | 2012
Hiroshi Ishikita; Bryan T. Eger; Ken Okamoto; Takeshi Nishino; Emil F. Pai
In mammals, xanthine oxidoreductase can exist as xanthine dehydrogenase (XDH) and xanthine oxidase (XO). The two enzymes possess common redox active cofactors, which form an electron transfer (ET) pathway terminated by a flavin cofactor. In spite of identical protein primary structures, the redox potential difference between XDH and XO for the flavin semiquinone/hydroquinone pair (E(sq/hq)) is ~170 mV, a striking difference. The former greatly prefers NAD(+) as ultimate substrate for ET from the iron-sulfur cluster FeS-II via flavin while the latter only accepts dioxygen. In XDH (without NAD(+)), however, the redox potential of the electron donor FeS-II is 180 mV higher than that for the acceptor flavin, yielding an energetically uphill ET. On the basis of new 1.65, 2.3, 1.9, and 2.2 Å resolution crystal structures for XDH, XO, the NAD(+)- and NADH-complexed XDH, E(sq/hq) were calculated to better understand how the enzyme activates an ET from FeS-II to flavin. The majority of the E(sq/hq) difference between XDH and XO originates from a conformational change in the loop at positions 423-433 near the flavin binding site, causing the differences in stability of the semiquinone state. There was no large conformational change observed in response to NAD(+) binding at XDH. Instead, the positive charge of the NAD(+) ring, deprotonation of Asp429, and capping of the bulk surface of the flavin by the NAD(+) molecule all contribute to altering E(sq/hq) upon NAD(+) binding to XDH.
Nature Communications | 2015
K. Saito; A. William Rutherford; Hiroshi Ishikita
In photosystem II (PSII), the Mn4CaO5 cluster catalyses the water splitting reaction. The crystal structure of PSII shows the presence of a hydrogen-bonded water molecule directly linked to O4. Here we show the detailed properties of the H-bonds associated with the Mn4CaO5 cluster using a quantum mechanical/molecular mechanical approach. When O4 is taken as a μ-hydroxo bridge acting as a hydrogen-bond donor to water539 (W539), the S0 redox state best describes the unusually short O4–OW539 distance (2.5 Å) seen in the crystal structure. We find that in S1, O4 easily releases the proton into a chain of eight strongly hydrogen-bonded water molecules. The corresponding hydrogen-bond network is absent for O5 in S1. The present study suggests that the O4-water chain could facilitate the initial deprotonation event in PSII. This unexpected insight is likely to be of real relevance to mechanistic models for water oxidation.