Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hirosuke Shiura is active.

Publication


Featured researches published by Hirosuke Shiura.


Science | 2010

Impeding Xist Expression from the Active X Chromosome Improves Mouse Somatic Cell Nuclear Transfer

Kimiko Inoue; Takashi Kohda; Michihiko Sugimoto; Takashi Sado; Narumi Ogonuki; Shogo Matoba; Hirosuke Shiura; Rieko Ikeda; Keiji Mochida; Takashi Fujii; Ken Sawai; Arie P. Otte; X.C. Tian; Xiangzhong Yang; Fumitoshi Ishino; Kuniya Abe; Atsuo Ogura

Cloning Futures Cloning mammals by somatic cell nuclear transfer is a technique with many potential applications in regenerative medicine, agriculture, and pharmaceutics; however, it is inefficient because of the incidence of aberrant genomic reprogramming. Inoue et al. (p. 496, published online 16 September) found that the gene product of Xist, which normally inactivates one of the two X chromosomes in females, was unexpectedly expressed ectopically from active X chromosomes in cloned mice. When Xist was deleted from the mice, gene expression returned to normal and the efficiency of somatic cell nuclear transfer increased about ninefold, offering promise for future nuclear transfer technology. Efficiency of mouse nuclear transfer was improved by correcting aberrant gene expression on the active X chromosome. Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that inactivates one of the two X chromosomes in females, was ectopically expressed from the active X (Xa) chromosome in cloned mouse embryos of both sexes. Deletion of Xist on Xa showed normal global gene expression and resulted in about an eight- to ninefold increase in cloning efficiency. We also identified an Xist-independent mechanism that specifically down-regulated a subset of X-linked genes through somatic-type repressive histone blocks. Thus, we have identified nonrandom reprogramming errors in mouse cloning that can be altered to improve the efficiency of SCNT methods.


Human Molecular Genetics | 2009

Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation

Hirosuke Shiura; Kenji Nakamura; Takafusa Hikichi; Toshiaki Hino; Kanako Oda; Rika Suzuki-Migishima; Takashi Kohda; Tomoko Kaneko-Ishino; Fumitoshi Ishino

Mice with maternal duplication of proximal Chromosome 11 (MatDp(prox11)), where Meg1/Grb10 is located, exhibit pre- and postnatal growth retardation. To elucidate the responsible imprinted gene for the growth abnormality, we examined the precise structure and regulatory mechanism of this imprinted region and generated novel model mice mimicking the pattern of imprinted gene expression observed in the MatDp(prox11) by deleting differentially methylated region of Meg1/Grb10 (Meg1-DMR). It was found that Cobl and Ddc, the neighboring genes of Meg1/Grb10, also comprise the imprinted region. We also found that the mouse-specific repeat sequence consisting of several CTCF-binding motifs in the Meg1-DMR functions as a silencer, suggesting that the Meg1/Grb10 imprinted region adopted a different regulatory mechanism from the H19/Igf2 region. Paternal deletion of the Meg1-DMR (+/DeltaDMR) caused both upregulation of the maternally expressed Meg1/Grb10 Type I in the whole body and Cobl in the yolk sac and loss of paternally expressed Meg1/Grb10 Type II and Ddc in the neonatal brain and heart, respectively, demonstrating maternalization of the entire Meg1/Grb10 imprinted region. We confirmed that the +/DeltaDMR mice exhibited the same growth abnormalities as the MatDp(prox11) mice. Fetal and neonatal growth was very sensitive to the expression level of Meg1/Grb10 Type I, indicating that the 2-fold increment of the Meg1/Grb10 Type I is one of the major causes of the growth retardation observed in the MatDp(prox11) and +/DeltaDMR mice. This suggests that the corresponding human GRB10 Type I plays an important role in the etiology of Silver-Russell syndrome caused by partial trisomy of 7p11-p13.


Epigenetics | 2014

Understanding the X chromosome inactivation cycle in mice: A comprehensive view provided by nuclear transfer

Mami Oikawa; Kimiko Inoue; Hirosuke Shiura; Shogo Matoba; Satoshi Kamimura; Michiko Hirose; Kazuyuki Mekada; Atsushi Yoshiki; Satoshi Tanaka; Kuniya Abe; Fumitoshi Ishino; Atsuo Ogura

During mouse development, imprinted X chromosome inactivation (XCI) is observed in preimplantation embryos and is inherited to the placental lineage, whereas random XCI is initiated in the embryonic proper. Xist RNA, which triggers XCI, is expressed ectopically in cloned embryos produced by somatic cell nuclear transfer (SCNT). To understand these mechanisms, we undertook a large-scale nuclear transfer study using different donor cells throughout the life cycle. The Xist expression patterns in the reconstructed embryos suggested that the nature of imprinted XCI is the maternal Xist-repressing imprint established at the last stage of oogenesis. Contrary to the prevailing model, this maternal imprint is erased in both the embryonic and extraembryonic lineages. The lack of the Xist-repressing imprint in the postimplantation somatic cells clearly explains how the SCNT embryos undergo ectopic Xist expression. Our data provide a comprehensive view of the XCI cycle in mice, which is essential information for future investigations of XCI mechanisms.


Stem cell reports | 2015

A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by wnt inhibition.

Michihiko Sugimoto; Masayo Kondo; Yumiko Koga; Hirosuke Shiura; Rieko Ikeda; Michiko Hirose; Atsuo Ogura; Ayumi Murakami; Atsushi Yoshiki; Susana Lopes; Kuniya Abe

Summary Epiblast stem cells (EpiSCs) are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos, and thus provide a useful model for studying “primed” pluripotent states. Here, we devised a simple and robust technique to derive high-quality EpiSCs using an inhibitor of WNT secretion. Using this method, we readily established EpiSC lines with high efficiency and were able to use whole embryonic portions without having to separate the epiblast from the visceral endoderm (VE). Expression analyses revealed that these EpiSCs maintained a homogeneous, undifferentiated status, yet showed high potential for differentiation both in vitro and in teratomas. Unlike EpiSCs derived by the original protocol, new EpiSC lines required continuous treatment with the Wnt inhibitor, suggesting some intrinsic differences from the existing EpiSCs. The homogeneous properties of this new version of EpiSCs should facilitate studies on the establishment and maintenance of a “primed” pluripotent state, and directed differentiation from the primed state.


Journal of Reproduction and Development | 2013

RNAi-mediated knockdown of Xist does not rescue the impaired development of female cloned mouse embryos

Mami Oikawa; Shogo Matoba; Kimiko Inoue; Satoshi Kamimura; Michiko Hirose; Narumi Ogonuki; Hirosuke Shiura; Michihiko Sugimoto; Kuniya Abe; Fumitoshi Ishino; Atsuo Ogura

Abstract In mice, one of the major epigenetic errors associated with somatic cell nuclear transfer (SCNT) is ectopic expression of Xist during the preimplantation period in both sexes. We found that this aberrant Xist expression could be impeded by deletion of Xist from the putative active X chromosome in donor cells. In male clones, it was also found that prior injection of Xist-specific siRNA could significantly improve the postimplantation development of cloned embryos as a result of a significant repression of Xist at the morula stage. In this study, we examined whether the same knockdown strategy could work as well in female SCNT-derived embryos. Embryos were reconstructed with cumulus cell nuclei and injected with Xist-specific siRNA at 6–7 h after oocyte activation. RNA FISH analysis revealed that siRNA treatment successfully repressed Xist RNA at the morula stage, as shown by the significant decrease in the number of cloud-type Xist signals in the blastomere nuclei. However, blastomeres with different sizes (from “pinpoint” to “cloud”) and numbers of Xist RNA signals remained within single embryos. After implantation, the dysregulated Xist expression was normalized autonomously, as in male clones, to a state of monoallelic expression in both embryonic and extraembryonic tissues. However, at term there was no significant improvement in the survival of the siRNA-injected cloned embryos. Thus, siRNA injection was largely effective in repressing the Xist overexpression in female cloned embryos but failed to rescue them, probably because of an inability to mimic consistent monoallelic Xist expression in these embryos. This could only be achieved in female embryos by applying a gene knockout strategy rather than an siRNA approach.


Biology of Reproduction | 2015

Generation of Cloned Mice from Adult Neurons by Direct Nuclear Transfer

Eiji Mizutani; Mami Oikawa; Hidetoshi Kassai; Kimiko Inoue; Hirosuke Shiura; Ryutaro Hirasawa; Satoshi Kamimura; Shogo Matoba; Narumi Ogonuki; Hiroaki Nagatomo; Kuniya Abe; Teruhiko Wakayama; Atsu Aiba; Atsuo Ogura

ABSTRACT Whereas cloning mammals by direct somatic cell nuclear transfer has been successful using a wide range of donor cell types, neurons from adult brain remain “unclonable” for unknown reasons. Here, using a combination of two epigenetic approaches, we examined whether neurons from adult mice could be cloned. First, we used a specific antibody to discover cell types with reduced amounts of a repressive histone mark—dimethylated histone H3 lysine 9 (H3K9me2)—and identified CA1 pyramidal cells in the hippocampus and Purkinje cells in the cerebellum as candidates. Second, reconstructed embryos were treated with trichostatin A (TSA), a potent histone deacetylase inhibitor. Using CA1 cells, cloned offspring were obtained at high rates, reaching 10.2% and 4.6% (of embryos transferred) for male and female donors, respectively. Cerebellar Purkinje cell nuclei were too large to maintain their genetic integrity during nuclear transfer, leading to developmental arrest of embryos. However, gene expression analysis using cloned blastocysts corroborated a high rate of genomic reprogrammability of CA1 pyramidal and Purkinje cells. Neurons from the hippocampal dentate gyrus and cerebral cortex, which had higher amounts of H3K9me2, could also be used for producing cloned offspring, but the efficiencies were low. A more thorough analysis revealed that TSA treatment was essential for cloning adult neuronal cells. This study demonstrates, to our knowledge for the first time, that adult neurons can be cloned by nuclear transfer. Furthermore, our data imply that reduced amounts of H3K9me2 and increased histone acetylation appear to act synergistically to improve the development of cloned embryos


DNA Research | 2013

Large, Male Germ Cell-Specific Hypomethylated DNA Domains With Unique Genomic and Epigenomic Features on the Mouse X Chromosome

Rieko Ikeda; Hirosuke Shiura; Koji Numata; Michihiko Sugimoto; Masayo Kondo; Nathan Mise; Masako Suzuki; John M. Greally; Kuniya Abe

To understand the epigenetic regulation required for germ cell-specific gene expression in the mouse, we analysed DNA methylation profiles of developing germ cells using a microarray-based assay adapted for a small number of cells. The analysis revealed differentially methylated sites between cell types tested. Here, we focused on a group of genomic sequences hypomethylated specifically in germline cells as candidate regions involved in the epigenetic regulation of germline gene expression. These hypomethylated sequences tend to be clustered, forming large (10 kb to ∼9 Mb) genomic domains, particularly on the X chromosome of male germ cells. Most of these regions, designated here as large hypomethylated domains (LoDs), correspond to segmentally duplicated regions that contain gene families showing germ cell- or testis-specific expression, including cancer testis antigen genes. We found an inverse correlation between DNA methylation level and expression of genes in these domains. Most LoDs appear to be enriched with H3 lysine 9 dimethylation, usually regarded as a repressive histone modification, although some LoD genes can be expressed in male germ cells. It thus appears that such a unique epigenomic state associated with the LoDs may constitute a basis for the specific expression of genes contained in these genomic domains.


Development | 2016

Live imaging of X chromosome reactivation dynamics in early mouse development can discriminate naïve from primed pluripotent stem cells

Shin Kobayashi; Yusuke Hosoi; Hirosuke Shiura; Kazuo Yamagata; Saori Takahashi; Yoshitaka Fujihara; Takashi Kohda; Masaru Okabe; Fumitoshi Ishino

Pluripotent stem cells can be classified into two distinct states, naïve and primed, which show different degrees of potency. One difficulty in stem cell research is the inability to distinguish these states in live cells. Studies on female mice have shown that reactivation of inactive X chromosomes occurs in the naïve state, while one of the X chromosomes is inactivated in the primed state. Therefore, we aimed to distinguish the two states by monitoring X chromosome reactivation. Thus far, X chromosome reactivation has been analysed using fixed cells; here, we inserted different fluorescent reporter gene cassettes (mCherry and eGFP) into each X chromosome. Using these knock-in ‘Momiji’ mice, we detected X chromosome reactivation accurately in live embryos, and confirmed that the pluripotent states of embryos were stable ex vivo, as represented by embryonic and epiblast stem cells in terms of X chromosome reactivation. Thus, Momiji mice provide a simple and accurate method for identifying stem cell status based on X chromosome reactivation. Highlighted Article: Reporter mice harbouring gene cassettes encoding two different fluorescent proteins inserted into specific loci in the X chromosomes are used to study X chromosome status in vivo.


PLOS ONE | 2014

Whole-Mount MeFISH: A Novel Technique for Simultaneous Visualization of Specific DNA Methylation and Protein/RNA Expression

Hirosuke Shiura; Akimitsu Okamoto; Hiroyuki Sasaki; Kuniya Abe

To understand the spatiotemporal changes in cellular status that occur during embryonic development, it is desirable to detect simultaneously the expression of genes, proteins, and epigenetic modifications in individual embryonic cells. A technique termed methylation-specific fluorescence in situ hybridization (MeFISH) was developed recently that can visualize the methylation status of specific DNA sequences in cells fixed on a glass slide. Here, we adapted this glass slide-based MeFISH to the study of intact embryos, and established a method called whole-mount MeFISH. This method can be applied to any DNA sequences in theory and, as a proof-of-concept experiment, we examined the DNA methylation status of satellite repeats in developing mouse primordial germ cells, in which global DNA demethylation is known to take place, and obtained a result that was consistent with previous findings, thus validating the MeFISH method. We also succeeded in combining whole-mount MeFISH with immunostaining or RNA fluorescence in situ hybridization (RNA-FISH) techniques by adopting steps to retain signals of RNA-FISH or immunostaining after harsh denaturation step of MeFISH. The combined methods enabled the simultaneous visualization of DNA methylation and protein or RNA expression at single-cell resolution without destroying embryonic and nuclear structures. This whole-mount MeFISH technique should facilitate the study of the dynamics of DNA methylation status during embryonic development with unprecedented resolution.


Genesis | 2013

Generation of a novel germline stem cell line expressing a germline‐specific reporter in the mouse

Hirosuke Shiura; Rieko Ikeda; Jiyoung Lee; Takuya Sato; Narumi Ogonuki; Michiko Hirose; Atsuo Ogura; Takehiko Ogawa; Kuniya Abe

Germline stem (GS) cells are stem cell lines derived from postnatal male germline cells. Remarkably, GS cells can form functional spermatozoa when transplanted into infertile host mouse testes, indicating that GS cells have spermatogonial stem cell (SSC) activity. As GS cells are the only type with SSC activity, they are most suitable for in vitro studies on male germ cell differentiation. However, GS cells can deviate from the germ cell state to become other types of cells, depending on culture conditions. Therefore, it is desirable to have a monitor system to ensure that GS cells are kept at the germ cell state in culture. Here, we established GS cell lines from neonatal testes of transgenic mice that express the fluorescent protein, Venus, whose gene expression is driven by the promoter of Mvh (mouse Vasa homolog), a gene highly specific to mammalian germ cells. This novel cell line has genuine GS cell properties equivalent to existing GS lines, including the ability to generate viable offspring. This Mvh–Venus GS cell line, to our knowledge, is the first one expressing a germ cell‐specific reporter. This valuable resource should provide new opportunities for studies on male germ cell differentiation. genesis 51:498–505.

Collaboration


Dive into the Hirosuke Shiura's collaboration.

Top Co-Authors

Avatar

Fumitoshi Ishino

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Kohda

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge