Hiroyasu Itoh
Hamamatsu Photonics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hiroyasu Itoh.
Nature | 2001
Ryohei Yasuda; Hiroyuki Noji; Masasuke Yoshida; Kazuhiko Kinosita; Hiroyasu Itoh
The enzyme F1-ATPase has been shown to be a rotary motor in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. At low ATP concentrations, the motor rotates in discrete 120° steps, consistent with sequential ATP hydrolysis on the three β-subunits. The mechanism of stepping is unknown. Here we show by high-speed imaging that the 120° step consists of roughly 90° and 30° substeps, each taking only a fraction of a millisecond. ATP binding drives the 90° substep, and the 30° substep is probably driven by release of a hydrolysis product. The two substeps are separated by two reactions of about 1 ms, which together occupy most of the ATP hydrolysis cycle. This scheme probably applies to rotation at full speed (∼130 revolutions per second at saturating ATP) down to occasional stepping at nanomolar ATP concentrations, and supports the binding-change model for ATP synthesis by reverse rotation of F1-ATPase.
Nature | 2004
Hiroyasu Itoh; Akira Takahashi; Kengo Adachi; Hiroyuki Noji; Ryohei Yasuda; Masasuke Yoshida; Kazuhiko Kinosita
ATP, the main biological energy currency, is synthesized from ADP and inorganic phosphate by ATP synthase in an energy-requiring reaction. The F1 portion of ATP synthase, also known as F1-ATPase, functions as a rotary molecular motor: in vitro its γ-subunit rotates against the surrounding α3β3 subunits, hydrolysing ATP in three separate catalytic sites on the β-subunits. It is widely believed that reverse rotation of the γ-subunit, driven by proton flow through the associated Fo portion of ATP synthase, leads to ATP synthesis in biological systems. Here we present direct evidence for the chemical synthesis of ATP driven by mechanical energy. We attached a magnetic bead to the γ-subunit of isolated F1 on a glass surface, and rotated the bead using electrical magnets. Rotation in the appropriate direction resulted in the appearance of ATP in the medium as detected by the luciferase–luciferin reaction. This shows that a vectorial force (torque) working at one particular point on a protein machine can influence a chemical reaction occurring in physically remote catalytic sites, driving the reaction far from equilibrium.
Cell | 2007
Kengo Adachi; Kazuhiro Oiwa; Takayuki Nishizaka; Shou Furuike; Hiroyuki Noji; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita
F(1)-ATPase is a rotary molecular motor that proceeds in 120 degrees steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of the 120 degrees step, and that the 40 degrees rotation accompanies reduction of the affinity for phosphate. We also show, by single-molecule imaging of a fluorescent ATP analog Cy3-ATP while F(1) is forced to rotate slowly, that release of Cy3-ADP occurs at approximately 240 degrees after it is bound as Cy3-ATP at 0 degrees . This and other results suggest that the affinity for ADP also decreases with rotation, and thus ADP release contributes part of energy for rotation. Together with previous results, the coupling scheme is now basically complete.
Nature | 1999
Yasuharu Arai; Ryohei Yasuda; Ken Ichirou Akashi; Yoshie Harada; Hidetake Miyata; Kazuhiko Kinosita; Hiroyasu Itoh
Filamentous structures are abundant in cells. Relatively rigid filaments, such as microtubules and actin, serve as intracellular scaffolds that support movement and force, and their mechanical properties are crucial to their function in the cell. Some aspects of the behaviour of DNA, meanwhile, depend critically on its flexibility—for example, DNA-binding proteins can induce sharp bends in the helix. The mechanical characterization of such filaments has generally been conducted without controlling the filament shape, by the observation of thermal motions or of the response to external forces or flows. Controlled buckling of a microtubule has been reported, but the analysis of the buckled shape was complicated. Here we report the continuous control of the radius of curvature of a molecular strand by tying a knot in it, using optical tweezers to manipulate the strands ends. We find that actin filaments break at the knot when the knot diameter falls below 0.4 µm. The pulling force at breakage is around 1 pN, two orders of magnitude smaller than the tensile stress of a straight filament. The flexural rigidity of the filament remained unchanged down to this diameter. We have also knotted a single DNA molecule, opening up the possibility of studying curvature-dependent interactions with associated proteins. We find that the knotted DNA is stronger than actin.
Nature | 2001
Yoshie Harada; Osamu Ohara; Akira Takatsuki; Hiroyasu Itoh; Nobuo Shimamoto; Kazuhiko Kinosita
Helical filaments driven by linear molecular motors are anticipated to rotate around their axis, but rotation consistent with the helical pitch has not been observed. 14S dynein and non-claret disjunctional protein (ncd) rotated a microtubule more efficiently than expected for its helical pitch, and myosin rotated an actin filament only poorly. For DNA-based motors such as RNA polymerase, transcription-induced supercoiling of DNA supports the general picture of tracking along the DNA helix. Here we report direct and real-time optical microscopy measurements of rotation rate that are consistent with high-fidelity tracking. Single RNA polymerase molecules attached to a glass surface rotated DNA for >100 revolutions around the right-handed screw axis of the double helix with a rotary torque of >5 pN nm. This real-time observation of rotation opens the possibility of resolving individual transcription steps.
Nature Structural & Molecular Biology | 2002
M. Yusuf Ali; Sotaro Uemura; Kengo Adachi; Hiroyasu Itoh; Kazuhiko Kinosita; Shin'ichi Ishiwata
Myosin V is a two-headed, actin-based molecular motor implicated in organelle transport. Previously, a single myosin V molecule has been shown to move processively along an actin filament in discrete ∼36 nm steps. However, 36nm is the helical repeat length of actin, and the geometry of the previous experiments may have forced the heads to bind to, or halt at, sites on one side of actin that are separated by 36 nm. To observe unconstrained motion, we suspended an actin filament in solution and attached a single myosin V molecule carrying a bead duplex. The duplex moved as a left-handed spiral around the filament, disregarding the right-handed actin helix. Our results indicate a stepwise walking mechanism in which myosin V positions and orients the unbound head such that the head will land at the 11th or 13th actin subunit on the opposing strand of the actin double helix.
Science | 2008
Shou Furuike; Mohammad Delawar Hossain; Yasushi Maki; Kengo Adachi; Toshiharu Suzuki; Ayako Kohori; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita
F1–adenosine triphosphatase (ATPase) is an ATP-driven rotary molecular motor in which the central γ subunit rotates inside a cylinder made of three α and three β subunits alternately arranged. The rotor shaft, an antiparallel α-helical coiled coil of the amino and carboxyl termini of the γ subunit, deeply penetrates the central cavity of the stator cylinder. We truncated the shaft step by step until the remaining rotor head would be outside the cavity and simply sat on the concave entrance of the stator orifice. All truncation mutants rotated in the correct direction, implying torque generation, although the average rotary speeds were low and short mutants exhibited moments of irregular motion. Neither a fixed pivot nor a rigid axle was needed for rotation of F1-ATPase.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Ryohei Yasuda; Tomoko Masaike; Kengo Adachi; Hiroyuki Noji; Hiroyasu Itoh; Kazuhiko Kinosita
F1-ATPase is an ATP-driven rotary motor in which a rod-shaped γ subunit rotates inside a cylinder made of α3β3 subunits. To elucidate the conformations of rotating F1, we measured fluorescence resonance energy transfer (FRET) between a donor on one of the three βs and an acceptor on γ in single F1 molecules. The yield of FRET changed stepwise at low ATP concentrations, reflecting the stepwise rotation of γ. In the ATP-waiting state, the FRET yields indicated a γ position ≈40° counterclockwise (= direction of rotation) from that in the crystal structures of mitochondrial F1, suggesting that the crystal structures mimic a metastable state before product release.
Biophysical Journal | 1998
Ken Ichirou Akashi; Hidetake Miyata; Hiroyasu Itoh; Kazuhiko Kinosita
Spontaneous formation of giant unilamellar liposomes in a gentle hydration process, as well as the adhesion energy between liposomal membranes, has been found to be dependent on the concentration of divalent alkali cations, Ca2+ or Mg2+, in the medium. With electrically neutral phosphatidylcholine (PC), Ca2+ or Mg2+ at 1-30 mM greatly promoted liposome formation compared to low yields in nonelectrolyte or potassium chloride solutions. When negatively charged phosphatidylglycerol (PG) was mixed at 10%, the yield was high in nonelectrolytes but liposomes did not form at 3-10 mM CaCl2. In the adhesion test with micropipette manipulation, liposomal membranes adhered to each other only in a certain range of CaCl2 concentrations, which agreed with the range where liposome did not form. The adhesion range shifted to higher Ca2+ concentrations as the amount of PG was increased. These results indicate that the divalent cations bind to and add positive charges to the lipids, and that membranes are separated and stabilized in the form of unilamellar liposomes when net charges on the membranes produce large enough electrostatic repulsion. Under the assumption that the maximum of adhesion energy within an adhesive range corresponds to exact charge neutralization by added Ca2+, association constants of PC and PG for Ca2+ were estimated at 7.3 M(-1) and 86 M(-1), respectively, in good agreement with literature values.
Optical tomography and spectroscopy of tissue : theory, instrumentation, instrumentation, model, and human studies. Conference | 1997
Hiroyasu Itoh; Ariella Evenzahav; Katsuyuki Kinoshita; Yoshinori Inagaki; Hiroshi Mizushima; Akira Takahashi; Tsuyoshi Hayakawa; Kazuhiko Kinosita
A gain modulating framing camera and its application towards the study of real time cellular phenomena is described. Based on a unique operating principle, this framing camera can be modulated by over 90% at 1 GHz. The camera consists of an image converter with a pair of deflection electrodes and a rectangular aperture. Since a sinusoidal electric field is applied to the deflection electrodes, the photoelectron image- forming beam is continuously deflected and swept on the aperture. A bias is applied to center the sweep of the photoelectron beam on the edge of the aperture. The gain modulating with high depth can hence be accomplished. We are now constructing a fluorescence lifetime imaging microscope system employing this gain modulating frame camera based on the phase domain method. Such high depth modulation enables us to achieve frequency signals as low as 1 Hz in heterodyne operation. We describe examples of application of the system towards the observation of various cellular phenomena.