Shou Furuike
Waseda University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shou Furuike.
Cell | 2007
Kengo Adachi; Kazuhiro Oiwa; Takayuki Nishizaka; Shou Furuike; Hiroyuki Noji; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita
F(1)-ATPase is a rotary molecular motor that proceeds in 120 degrees steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of the 120 degrees step, and that the 40 degrees rotation accompanies reduction of the affinity for phosphate. We also show, by single-molecule imaging of a fluorescent ATP analog Cy3-ATP while F(1) is forced to rotate slowly, that release of Cy3-ADP occurs at approximately 240 degrees after it is bound as Cy3-ATP at 0 degrees . This and other results suggest that the affinity for ADP also decreases with rotation, and thus ADP release contributes part of energy for rotation. Together with previous results, the coupling scheme is now basically complete.
Science | 2008
Shou Furuike; Mohammad Delawar Hossain; Yasushi Maki; Kengo Adachi; Toshiharu Suzuki; Ayako Kohori; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita
F1–adenosine triphosphatase (ATPase) is an ATP-driven rotary molecular motor in which the central γ subunit rotates inside a cylinder made of three α and three β subunits alternately arranged. The rotor shaft, an antiparallel α-helical coiled coil of the amino and carboxyl termini of the γ subunit, deeply penetrates the central cavity of the stator cylinder. We truncated the shaft step by step until the remaining rotor head would be outside the cavity and simply sat on the concave entrance of the stator orifice. All truncation mutants rotated in the correct direction, implying torque generation, although the average rotary speeds were low and short mutants exhibited moments of irregular motion. Neither a fixed pivot nor a rigid axle was needed for rotation of F1-ATPase.
Biophysical Journal | 2008
Shou Furuike; Kengo Adachi; Naoyoshi Sakaki; Rieko Shimo-Kon; Hiroyasu Itoh; Eiro Muneyuki; Masasuke Yoshida; Kazuhiko Kinosita
F1-ATPase, a water-soluble portion of the enzyme ATP synthase, is a rotary molecular motor driven by ATP hydrolysis. To learn how the kinetics of rotation are regulated, we have investigated the rotational characteristics of a thermophilic F1-ATPase over the temperature range 4–50°C by attaching a polystyrene bead (or bead duplex) to the rotor subunit and observing its rotation under a microscope. The apparent rate of ATP binding estimated at low ATP concentrations increased from 1.2 × 106 M−1 s−1 at 4°C to 4.3 × 107 M−1 s−1 at 40°C, whereas the torque estimated at 2 mM ATP remained around 40 pN·nm over 4–50°C. The rotation was stepwise at 4°C, even at the saturating ATP concentration of 2 mM, indicating the presence of a hitherto unresolved rate-limiting reaction that occurs at ATP-waiting angles. We also measured the ATP hydrolysis activity in bulk solution at 4–65°C. F1-ATPase tends to be inactivated by binding ADP tightly. Both the inactivation and reactivation rates were found to rise sharply with temperature, and above 30°C, equilibrium between the active and inactive forms was reached within 2 s, the majority being inactive. Rapid inactivation at high temperatures is consistent with the physiological role of this enzyme, ATP synthesis, in the thermophile.
Journal of Biological Chemistry | 2012
Eiji Usukura; Toshiharu Suzuki; Shou Furuike; Naoki Soga; Ei Ichiro Saita; Toru Hisabori; Kazuhiko Kinosita; Masasuke Yoshida
Background: ATP synthase (F0F1) is a rotary motor enzyme. Results: F1 with a short-sized helix-1 in β subunit rotates with half of the normal torque and supports reduced ATP synthesis activity. Conclusion: Helix-1 acts as a “pushrod” to generate torque, and torque-reduced F0F1 retains the catalytic ability of ATP synthesis. Significance: Generation and utilization of the torque are crucial for motor enzymes. ATP synthase (F0F1) is made of two motors, a proton-driven motor (F0) and an ATP-driven motor (F1), connected by a common rotary shaft, and catalyzes proton flow-driven ATP synthesis and ATP-driven proton pumping. In F1, the central γ subunit rotates inside the α3β3 ring. Here we report structural features of F1 responsible for torque generation and the catalytic ability of the low-torque F0F1. (i) Deletion of one or two turns in the α-helix in the C-terminal domain of catalytic β subunit at the rotor/stator contact region generates mutant F1s, termed F1(1/2)s, that rotate with about half of the normal torque. This helix would support the helix-loop-helix structure acting as a solid “pushrod” to push the rotor γ subunit, but the short helix in F1(1/2)s would fail to accomplish this task. (ii) Three different half-torque F0F1(1/2)s were purified and reconstituted into proteoliposomes. They carry out ATP-driven proton pumping and build up the same small transmembrane ΔpH, indicating that the final ΔpH is directly related to the amount of torque. (iii) The half-torque F0F1(1/2)s can catalyze ATP synthesis, although slowly. The rate of synthesis varies widely among the three F0F1(1/2)s, which suggests that the rate reflects subtle conformational variations of individual mutants.
Biophysical Journal | 2008
Mohammad Delawar Hossain; Shou Furuike; Yasushi Maki; Kengo Adachi; Toshiharu Suzuki; Ayako Kohori; Hiroyasu Itoh; Masasuke Yoshida; Kazuhiko Kinosita
F1-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside the cylinder made of α3β3 subunits. The amino and carboxy termini of the γ-subunit form the axle, an α-helical coiled coil that deeply penetrates the stator cylinder. We previously truncated the axle step by step, starting with the longer carboxy terminus and then cutting both termini at the same levels, resulting in a slower yet considerably powerful rotation. Here we examine the role of each helix by truncating only the carboxy terminus by 25–40 amino-acid residues. Longer truncation impaired the stability of the motor complex severely: 40 deletions failed to yield rotating the complex. Up to 36 deletions, however, the mutants produced an apparent torque at nearly half of the wild-type torque, independent of truncation length. Time-averaged rotary speeds were low because of load-dependent stumbling at 120° intervals, even with saturating ATP. Comparison with our previous work indicates that half the normal torque is produced at the orifice of the stator. The very tip of the carboxy terminus adds the other half, whereas neither helix in the middle of the axle contributes much to torque generation and the rapid progress of catalysis. None of the residues of the entire axle played a specific decisive role in rotation.
Nature Communications | 2011
Shou Furuike; Masahiro Nakano; Kengo Adachi; Hiroyuki Noji; Kazuhiko Kinosita; Ken Yokoyama
Vacuole-type ATPases (VoV1) and FoF1 ATP synthases couple ATP hydrolysis/synthesis in the soluble V1 or F1 portion with proton (or Na+) flow in the membrane-embedded Vo or Fo portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V1 and the whole VoV1 from Thermus thermophilus, by attaching a 40-nm gold bead for which viscous drag is almost negligible. V1 made 120° steps, commensurate with the presence of three catalytic sites. Dwells between the steps involved at least two events other than ATP binding, one likely to be ATP hydrolysis. VoV1 exhibited 12 dwell positions per revolution, consistent with the 12-fold symmetry of the Vo rotor in T. thermophilus. Unlike F1 that undergoes 80°–40° substepping, chemo-mechanical checkpoints in isolated V1 are all at the ATP-waiting position, and Vo adds further bumps through stator–rotor interactions outside and remote from V1.
FEBS Letters | 2009
Masato Tsumuraya; Shou Furuike; Kengo Adachi; Kazuhiko Kinosita; Masasuke Yoshida
F1‐ATPase is an ATP‐driven motor in which γε rotates in the α3β3‐cylinder. It is attenuated by MgADP inhibition and by the ε subunit in an inhibitory form. The non‐inhibitory form of ε subunit of thermophilic Bacillus PS3 F1‐ATPase is stabilized by ATP‐binding with micromolar K d at 25 °C. Here, we show that at [ATP] > 2 μM, ε does not affect rotation of PS3 F1‐ATPase but, at 200 nM ATP, ε prolongs the pause of rotation caused by MgADP inhibition while the frequency of the pause is unchanged. It appears that ε undergoes reversible transition to the inhibitory form at [ATP] below K d.
Biophysical Journal | 2011
Ayako Kohori; Ryohei Chiwata; Mohammad Delawar Hossain; Shou Furuike; Katsuyuki Shiroguchi; Kengo Adachi; Masasuke Yoshida; Kazuhiko Kinosita
F(1)-ATPase is an ATP-driven rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α(3)β(3) subunits. The amino and carboxyl termini of the γ rotor form a coiled coil of α-helices that penetrates the stator cylinder to serve as an axle. Crystal structures indicate that the axle is supported by the stator at two positions, at the orifice and by the hydrophobic sleeve surrounding the axle tip. The sleeve contacts are almost exclusively to the longer carboxyl-terminal helix, whereas nearly half the orifice contacts are to the amino-terminal helix. Here, we truncated the amino-terminal helix stepwise up to 50 residues, removing one half of the axle all the way up and far beyond the orifice. The half-sliced axle still rotated with an unloaded speed a quarter of the wild-type speed, with torque nearly half the wild-type torque. The truncations were made in a construct where the rotor tip was connected to a β-subunit via a short peptide linker. Linking alone did not change the rotational characteristics significantly. These and previous results show that nearly half the normal torque is generated if rotor-stator interactions either at the orifice or at the sleeve are preserved, suggesting that the make of the motor is quite robust.
Journal of Bacteriology | 2012
Hideji Yoshida; Yasushi Maki; Shou Furuike; Akiko Sakai; Masami Ueta; Akira Wada
Here, we provide evidence that YqjD, a hypothetical protein of Escherichia coli, is an inner membrane and ribosome binding protein. This protein is expressed during the stationary growth phase, and expression is regulated by stress response sigma factor RpoS. YqjD possesses a transmembrane motif in the C-terminal region and associates with 70S and 100S ribosomes at the N-terminal region. Interestingly, E. coli possesses two paralogous proteins of YqjD, ElaB and YgaM, which are expressed and bind to ribosomes in a similar manner to YqjD. Overexpression of YqjD leads to inhibition of cell growth. It has been suggested that YqjD loses ribosomal activity and localizes ribosomes to the membrane during the stationary phase.
Biophysical Journal | 2014
Ryohei Chiwata; Ayako Kohori; Tomonari Kawakami; Katsuyuki Shiroguchi; Shou Furuike; Kengo Adachi; Kazuo Sutoh; Masasuke Yoshida; Kazuhiko Kinosita
F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor’s high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3β3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3β3 subunits using the energy derived from ATP hydrolysis. The rotor consists of an axle, a coiled coil of the amino- and carboxyl-terminal α-helices of γ, which deeply penetrates the stator cylinder, and a globular protrusion that juts out from the stator. Previous work has shown that, for a thermophilic F1, significant portions of the axle can be truncated and the motor still rotates a submicron sized bead duplex, indicating generation of up to half the wild-type (WT) torque. Here, we inquire if any specific interactions between the stator and the rest of the rotor are needed for the generation of a sizable torque. We truncated the protruding portion of the rotor and replaced part of the remaining axle residues such that every residue of the rotor has been deleted or replaced in this or previous truncation mutants. This protrusionless construct showed an unloaded rotary speed about a quarter of the WT, and generated one-third to one-half of the WT torque. No residue-specific interactions are needed for this much performance. F1 is so designed that the basic rotor-stator interactions for torque generation and control of catalysis rely solely upon the shape and size of the rotor at very low resolution. Additional tailored interactions augment the torque to allow ATP synthesis under physiological conditions.