Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong-Min Ni is active.

Publication


Featured researches published by Hong-Min Ni.


Journal of Biological Chemistry | 2007

Differential Effects of Endoplasmic Reticulum Stress-induced Autophagy on Cell Survival

Wen-Xing Ding; Hong-Min Ni; Wentao Gao; Yi Feng Hou; Melissa A. Melan; Xiaoyun Chen; Donna B. Stolz; Zhi Ming Shao; Xiao Ming Yin

Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.


Journal of Biological Chemistry | 2010

Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming

Wen-Xing Ding; Hong-Min Ni; Min Li; Yong Liao; Xiaoyun Chen; Donna B. Stolz; Gerald W. Dorn; Xiao Ming Yin

Damaged mitochondria can be eliminated by autophagy, i.e. mitophagy, which is important for cellular homeostasis and cell survival. Despite the fact that a number of factors have been found to be important for mitophagy in mammalian cells, their individual roles in the process had not been clearly defined. Parkin is a ubiquitin-protein isopeptide ligase able to translocate to the mitochondria that are to be removed. We showed here in a chemical hypoxia model of mitophagy induced by an uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP) that Parkin translocation resulted in mitochondrial ubiquitination and p62 recruitment to the mitochondria. Small inhibitory RNA-mediated knockdown of p62 significantly diminished mitochondrial recognition by the autophagy machinery and the subsequent elimination. Thus Parkin, ubiquitin, and p62 function in preparing mitochondria for mitophagy, here referred to as mitochondrial priming. However, these molecules were not required for the induction of autophagy machinery. Neither Parkin nor p62 seemed to affect autophagy induction by CCCP. Instead, we found that Nix was required for the autophagy induction. Nix promoted CCCP-induced mitochondrial depolarization and reactive oxygen species generation, which inhibited mTOR signaling and activated autophagy. Nix also contributed to mitochondrial priming by controlling the mitochondrial translocation of Parkin, although reactive oxygen species generation was not involved in this step. Deletion of the C-terminal membrane targeting sequence but not mutations in the BH3 domain disabled Nix for these functions. Our work thus distinguished the molecular events responsible for the different phases of mitophagy and placed Nix upstream of the events.


Gastroenterology | 2010

Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice

Wen-Xing Ding; Min Li; Xiaoyun Chen; Hong-Min Ni; Chih–Wen Lin; Wentao Gao; Binfeng Lu; Donna B. Stolz; Dahn L. Clemens; Xiao Ming Yin

BACKGROUND & AIMS Alcohol abuse is a major cause of liver injury. The pathologic features of alcoholic liver disease develop over prolonged periods, yet the cellular defense mechanisms against the detrimental effects of alcohol are not well understood. We investigated whether macroautophagy, an evolutionarily conserved cellular mechanism that is commonly activated in response to stress, could protect liver cells from ethanol toxicity. METHODS Mice were acutely given ethanol by gavage. The effects of ethanol on primary hepatocytes and hepatic cell lines were also studied in vitro. RESULTS Ethanol-induced macroautophagy in the livers of mice and cultured cells required ethanol metabolism, generation of reactive oxygen species, and inhibition of mammalian target of rapamycin signaling. Suppression of macroautophagy with pharmacologic agents or small interfering RNAs significantly increased hepatocyte apoptosis and liver injury; macroautophagy therefore protected cells from the toxic effects of ethanol. Macroautophagy induced by ethanol seemed to be selective for damaged mitochondria and accumulated lipid droplets, but not long-lived proteins, which could account for its protective effects. Increasing macroautophagy pharmacologically reduced hepatotoxicity and steatosis associated with acute ethanol exposure. CONCLUSIONS Macroautophagy protects against ethanol-induced toxicity in livers of mice. Reagents that modify macroautophagy might be developed as therapeutics for patients with alcoholic liver disease.


Hepatology | 2012

Activation of autophagy protects against acetaminophen‐induced hepatotoxicity

Hong-Min Ni; Abigail Bockus; Nikki Boggess; Hartmut Jaeschke; Wen-Xing Ding

Autophagy can selectively remove damaged organelles, including mitochondria, and, in turn, protect against mitochondria‐damage–induced cell death. Acetaminophen (APAP) overdose can cause liver injury in animals and humans by inducing mitochondria damage and subsequent necrosis in hepatocytes. Although many detrimental mechanisms have been reported to be responsible for APAP‐induced hepatotoxicity, it is not known whether APAP can modulate autophagy to regulate hepatotoxicity in hepatocytes. To test the hypothesis that autophagy may play a critical protective role against APAP‐induced hepatotoxicity, primary cultured mouse hepatocytes and green fluorescent protein/light chain 3 transgenic mice were treated with APAP. By using a series of morphological and biochemical autophagic flux assays, we found that APAP induced autophagy both in the in vivo mouse liver and in primary cultured hepatocytes. We also found that APAP treatment might suppress mammalian target of rapamycin in hepatocytes and that APAP‐induced autophagy was suppressed by N‐acetylcysteine, suggesting APAP mitochondrial protein binding and the subsequent production of reactive oxygen species may play an important role in APAP‐induced autophagy. Pharmacological inhibition of autophagy by 3‐methyladenine or chloroquine further exacerbated APAP‐induced hepatotoxicity. In contrast, induction of autophagy by rapamycin inhibited APAP‐induced hepatotoxicity. Conclusion: APAP overdose induces autophagy, which attenuates APAP‐induced liver cell death by removing damaged mitochondria. (HEPATOLOGY 2012)


Autophagy | 2011

Dissecting the dynamic turnover of GFP-LC3 in the autolysosome

Hong-Min Ni; Abigail Bockus; Ann L. Wozniak; Kellyann Jones; Steven A. Weinman; Xiao Ming Yin; Wen-Xing Ding

Determination of autophagic flux is essential to assess and differentiate between the induction or suppression of autophagy. Western blot analysis for free GFP fragments resulting from the degradation of GFP-LC3 within the autolysosome has been proposed as one of the autophagic flux assays. However, the exact dynamics of GFP-LC3 during the autophagy process are not clear. Moreover, the characterization of this assay in mammalian cells is limited. Here we found that lysosomal acidity is an important regulating factor for the step-wise degradation of GFP-LC3, in which the free GFP fragments are first generated but accumulate only when the lysosomal acidity is moderate, such as during rapamycin treatment. When the lysosomal acidity is high, such as during starvation in Earles balanced salt solution (EBSS), the GFP fragments are further degraded and thus do not accumulate. Much to our surprise, we found that the level of free GFP fragments increased in the presence of several late stage autophagy inhibitors, such as chloroquine or E64D plus pepstatin A. Furthermore, the amount of free GFP fragments depends on the concentrations of these inhibitors. Unsaturating concentrations of chloroquine or bafilomycin A1 increased the level of free GFP fragments while saturating concentrations did not. Data from the present study demonstrate that GFP-LC3 is degraded in a step-wise fashion in the autolysosome, in which the LC3 portion of the fusion protein appears to be more rapidly degraded than GFP. However, the amount of free GFP fragments does not necessarily correlate with autophagic flux if the lysosomal enzyme activity and pH are changed. Therefore, caution must be used when conducting the GFP-LC3 cleavage assay as a determinant of autophagic flux. In order to accurately assess autophagy, it is more appropriate to assess GFP-LC3 cleavage in the presence or absence of saturating or unsaturating concentrations of chloroquine or bafilomycin A1 together with other autophagy markers, such as levels of p62 and endogenous LC3-II.


Journal of Biological Chemistry | 2007

Cyanidin-3-rutinoside, a Natural Polyphenol Antioxidant, Selectively Kills Leukemic Cells by Induction of Oxidative Stress

Rentian Feng; Hong-Min Ni; Shiow Y. Wang; Irina L. Tourkova; Michael R. Shurin; Hisashi Harada; Xiao Ming Yin

Anthocyanins are a group of naturally occurring phenolic compounds widely available in fruits and vegetables in human diets. They have broad biological activities including anti-mutagenesis and anticarcinogenesis, which are generally attributed to their antioxidant activities. We studied the effects and the mechanisms of the most common type of anthocyanins, cyanidin-3-rutinoside, in several leukemia and lymphoma cell lines. We found that cyanidin-3-rutinoside extracted and purified from the black raspberry cultivar Jewel induced apoptosis in HL-60 cells in a dose- and time-dependent manner. Paradoxically, this compound induced the accumulation of peroxides, which are involved in the induction of apoptosis in HL-60 cells. In addition, cyanidin-3-rutinoside treatment resulted in reactive oxygen species (ROS)-dependent activation of p38 MAPK and JNK, which contributed to cell death by activating the mitochondrial pathway mediated by Bim. Down-regulation of Bim or overexpression of Bcl-2 or Bcl-xL considerably blocked apoptosis. Notably, cyanidin-3-rutinoside treatment did not lead to increased ROS accumulation in normal human peripheral blood mononuclear cells and had no cytotoxic effects on these cells. These results indicate that cyanidin-3-rutinoside has the potential to be used in leukemia therapy with the advantages of being widely available and selective against tumors.


Journal of Pharmacology and Experimental Therapeutics | 2011

Differential Roles of Unsaturated and Saturated Fatty Acids on Autophagy and Apoptosis in Hepatocytes

Shuang Mei; Hong-Min Ni; Sharon Manley; Abigail Bockus; Karen M. Kassel; James P. Luyendyk; Bryan L. Copple; Wen-Xing Ding

Fatty acid-induced lipotoxicity plays a critical role in the pathogenesis of nonalcoholic liver disease. Saturated fatty acids and unsaturated fatty acids have differential effects on cell death and steatosis, but the mechanisms responsible for these differences are not known. Using cultured HepG2 cells and primary mouse hepatocytes, we found that unsaturated and saturated fatty acids differentially regulate autophagy and apoptosis. The unsaturated fatty acid, oleic acid, promoted the formation of triglyceride-enriched lipid droplets and induced autophagy but had a minimal effect on apoptosis. In contrast, the saturated fatty acid, palmitic acid, was poorly converted into triglyceride-enriched lipid droplets, suppressed autophagy, and significantly induced apoptosis. Subsequent studies revealed that palmitic acid-induced apoptosis suppressed autophagy by inducing caspase-dependent Beclin 1 cleavage, indicating cross-talk between apoptosis and autophagy. Moreover, our data suggest that the formation of triglyceride-enriched lipid droplets and induction of autophagy are protective mechanisms against fatty acid-induced lipotoxicity. In line with our in vitro findings, we found that high-fat diet-induced hepatic steatosis was associated with autophagy in the mouse liver. Potential modulation of autophagy may be a novel approach that has therapeutic benefits for obesity-induced steatosis and liver injury.


Redox biology | 2015

Mitochondrial dynamics and mitochondrial quality control.

Hong-Min Ni; Jessica A. Williams; Wen-Xing Ding

Mitochondria are cellular energy powerhouses that play important roles in maintaining cell survival, cell death and cellular metabolic homeostasis. Timely removal of damaged mitochondria via autophagy (mitophagy) is thus critical for cellular homeostasis and function. Mitochondria are reticular organelles that have high plasticity for their dynamic structures and constantly undergo fission and fusion as well as movement through the cytoskeleton. In this review, we discuss the most recent progress on the molecular mechanisms and roles of mitochondrial fission/fusion and mitochondrial motility in mitophagy. We also discuss multiple pathways leading to the quality control of mitochondria in addition to the traditional mitophagy pathway under different conditions.


Hepatology | 2013

Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice.

Mitchell R. McGill; Yuchao Xie; Hong-Min Ni; Wen-Xing Ding; Hartmut Jaeschke

Acetaminophen (APAP) overdose is a major cause of hepatotoxicity and acute liver failure in the U.S., but the pathophysiology is incompletely understood. Despite evidence for apoptotic signaling, hepatic cell death after APAP is generally considered necrotic in mice and in humans. Recent findings suggest that the receptor interacting protein kinase 3 (RIP3) acts as a switch from apoptosis to necrosis (programmed necrosis). Thus, the aim of the current investigation was to determine if RIP3 is involved in APAP‐induced liver cell death. APAP (200‐300 mg/kg) caused glutathione depletion and protein adduct formation, oxidant stress, mitochondrial release of apoptosis inducing factor, and nuclear DNA fragmentation resulting in centrilobular necrosis in C57Bl/6J mice. Inhibiting RIP3 protein induction with antisense morpholinos in wild‐type animals or using RIP3‐deficient mice had no effect on protein adduct formation but attenuated all other parameters, including necrotic cell death, at 6 hours after APAP. In addition, cultured hepatocytes from RIP3‐deficient mice showed reduced injury compared to wild‐type cells after 24 hours. Interestingly, APAP‐induced mitochondrial translocation of dynamin‐related protein 1 (Drp1), the initiator of mitochondrial fission, was inhibited by reduced RIP3 protein expression and the Drp1 inhibitor MDIVI reduced APAP‐induced cell death at 24 hours. All of these protective effects were lost after 24 hours in vivo or 48 hours in vitro. Conclusion: RIP3 is an early mediator of APAP hepatotoxicity, involving modulation of mitochondrial dysfunction and oxidant stress. Controlling RIP3 expression could be a promising new approach to reduce APAP‐induced liver injury, but requires complementary strategies to control mitochondrial dysfunction for long‐term protection. (Hepatology 2013; 58:2099–2108)


Hepatology | 2004

Bid‐dependent generation of oxygen radicals promotes death receptor activation–induced apoptosis in murine hepatocytes

Wen-Xing Ding; Hong-Min Ni; Daniell Difrancesca; Donna B. Stolz; Xiao Ming Yin

Activation of tumor necrosis factor receptor 1 or Fas leads to the generation of reactive oxygen species, which are important to the cytotoxic effects of tumor necrosis factor α (TNF‐α) or Fas ligand. However, how these radicals are generated following receptor ligation is not clear. Using primary hepatocytes, we found that TNF‐α or anti–Fas antibody–induced burst of oxygen radicals was mainly derived from the mitochondria. We discovered that Bid—a pro‐death Bcl‐2 family protein activated by ligated death receptors—was the main intracellular molecule signaling the generation of the radicals by targeting to the mitochondria and that the majority of oxygen radical production was dependent on Bid. Reactive oxygen species contributed to cell death and caspase activation by promoting FLICE‐inhibitory protein degradation and mitochondrial release of cytochrome c. For the latter part, the oxygen radicals did not affect Bak oligomerization but instead promoted mitochondrial cristae reorganization and membrane lipid peroxidation. Antioxidants could reverse these changes and therefore protect against TNF‐α or anti–Fas‐induced apoptosis. In conclusion, our studies established the signaling pathway from death receptor engagement to oxygen radical generation and determined the mechanism by which reactive oxygen species contributed to hepatocyte apoptosis following death receptor activation. (HEPATOLOGY 2004;40:403–413.)

Collaboration


Dive into the Hong-Min Ni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyun Chen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wentao Gao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Donna B. Stolz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Min Li

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Xiao-Ming Yin

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge