Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiao Ming Yin is active.

Publication


Featured researches published by Xiao Ming Yin.


Clinical Cancer Research | 2011

Principles and Current Strategies for Targeting Autophagy for Cancer Treatment

Ravi K. Amaravadi; Jennifer Lippincott-Schwartz; Xiao Ming Yin; William A. Weiss; Naoko Takebe; William Timmer; Robert S. DiPaola; Michael T. Lotze; Eileen White

Autophagy is an evolutionarily conserved, intracellular self-defense mechanism in which organelles and proteins are sequestered into autophagic vesicles that are subsequently degraded through fusion with lysosomes. Cells, thereby, prevent the toxic accumulation of damaged or unnecessary components, but also recycle these components to sustain metabolic homoeostasis. Heightened autophagy is a mechanism of resistance for cancer cells faced with metabolic and therapeutic stress, revealing opportunities for exploitation as a therapeutic target in cancer. We summarize recent developments in the field of autophagy and cancer and build upon the results presented at the Cancer Therapy Evaluation Program (CTEP) Early Drug Development meeting in March 2010. Herein, we describe our current understanding of the core components of the autophagy machinery and the functional relevance of autophagy within the tumor microenvironment, and we outline how this knowledge has informed preclinical investigations combining the autophagy inhibitor hydroxychloroquine (HCQ) with chemotherapy, targeted therapy, and immunotherapy. Finally, we describe ongoing clinical trials involving HCQ as a first generation autophagy inhibitor, as well as strategies for the development of novel, more potent, and specific inhibitors of autophagy. Clin Cancer Res; 17(4); 654–66. ©2011 AACR.


Journal of Biological Chemistry | 2007

Differential Effects of Endoplasmic Reticulum Stress-induced Autophagy on Cell Survival

Wen-Xing Ding; Hong-Min Ni; Wentao Gao; Yi Feng Hou; Melissa A. Melan; Xiaoyun Chen; Donna B. Stolz; Zhi Ming Shao; Xiao Ming Yin

Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.


Journal of Biological Chemistry | 2010

Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming

Wen-Xing Ding; Hong-Min Ni; Min Li; Yong Liao; Xiaoyun Chen; Donna B. Stolz; Gerald W. Dorn; Xiao Ming Yin

Damaged mitochondria can be eliminated by autophagy, i.e. mitophagy, which is important for cellular homeostasis and cell survival. Despite the fact that a number of factors have been found to be important for mitophagy in mammalian cells, their individual roles in the process had not been clearly defined. Parkin is a ubiquitin-protein isopeptide ligase able to translocate to the mitochondria that are to be removed. We showed here in a chemical hypoxia model of mitophagy induced by an uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP) that Parkin translocation resulted in mitochondrial ubiquitination and p62 recruitment to the mitochondria. Small inhibitory RNA-mediated knockdown of p62 significantly diminished mitochondrial recognition by the autophagy machinery and the subsequent elimination. Thus Parkin, ubiquitin, and p62 function in preparing mitochondria for mitophagy, here referred to as mitochondrial priming. However, these molecules were not required for the induction of autophagy machinery. Neither Parkin nor p62 seemed to affect autophagy induction by CCCP. Instead, we found that Nix was required for the autophagy induction. Nix promoted CCCP-induced mitochondrial depolarization and reactive oxygen species generation, which inhibited mTOR signaling and activated autophagy. Nix also contributed to mitochondrial priming by controlling the mitochondrial translocation of Parkin, although reactive oxygen species generation was not involved in this step. Deletion of the C-terminal membrane targeting sequence but not mutations in the BH3 domain disabled Nix for these functions. Our work thus distinguished the molecular events responsible for the different phases of mitophagy and placed Nix upstream of the events.


Gastroenterology | 2010

Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice

Wen-Xing Ding; Min Li; Xiaoyun Chen; Hong-Min Ni; Chih–Wen Lin; Wentao Gao; Binfeng Lu; Donna B. Stolz; Dahn L. Clemens; Xiao Ming Yin

BACKGROUND & AIMS Alcohol abuse is a major cause of liver injury. The pathologic features of alcoholic liver disease develop over prolonged periods, yet the cellular defense mechanisms against the detrimental effects of alcohol are not well understood. We investigated whether macroautophagy, an evolutionarily conserved cellular mechanism that is commonly activated in response to stress, could protect liver cells from ethanol toxicity. METHODS Mice were acutely given ethanol by gavage. The effects of ethanol on primary hepatocytes and hepatic cell lines were also studied in vitro. RESULTS Ethanol-induced macroautophagy in the livers of mice and cultured cells required ethanol metabolism, generation of reactive oxygen species, and inhibition of mammalian target of rapamycin signaling. Suppression of macroautophagy with pharmacologic agents or small interfering RNAs significantly increased hepatocyte apoptosis and liver injury; macroautophagy therefore protected cells from the toxic effects of ethanol. Macroautophagy induced by ethanol seemed to be selective for damaged mitochondria and accumulated lipid droplets, but not long-lived proteins, which could account for its protective effects. Increasing macroautophagy pharmacologically reduced hepatotoxicity and steatosis associated with acute ethanol exposure. CONCLUSIONS Macroautophagy protects against ethanol-induced toxicity in livers of mice. Reagents that modify macroautophagy might be developed as therapeutics for patients with alcoholic liver disease.


Autophagy | 2008

Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome.

Wen-Xing Ding; Xiao Ming Yin

Based on a functional categorization, proteins may be grouped into three types and sorted to either the proteasome or the macroautophagy pathway for degradation. The two pathways are mechanistically connected but their capacity seems different. Macroautophagy can degrade all forms of misfolded proteins whereas proteasomal degradation is likely limited to soluble ones.Unlike the bulk protein degradation that occurs during starvation, autophagic degradation of misfolded proteins can have a degree of specificity, determined by ubiquitin modification and the interactions of p62/SQSTM1 and HDAC6. Macroautophagy is initiated in response to endoplasmic reticulum (ER) stress caused by misfolded proteins, via the ER-activated autophagy (ERAA) pathway, which activates a partial unfolded protein response involving PERK and/or IRE1, and a calcium-mediated signaling cascade. ERAA serves the function of mitigating ER stress and suppressing cell death, which may be explored for controlling protein conformational diseases. Conversely, inhibition of ERAA may be explored for sensitizing resistant tumor cells to cytotoxic agents.


The Journal of Neuroscience | 2007

Critical Role of Calpain I in Mitochondrial Release of Apoptosis-Inducing Factor in Ischemic Neuronal Injury

Guodong Cao; Juan Xing; Xiao Xiao; Anthony K.F. Liou; Yanqin Gao; Xiao Ming Yin; Robert S. B. Clark; Steven H. Graham; Jun Chen

Loss of mitochondrial membrane integrity and release of apoptogenic factors are a key step in the signaling cascade leading to neuronal cell death in various neurological disorders, including ischemic injury. Emerging evidence has suggested that the intramitochondrial protein apoptosis-inducing factor (AIF) translocates to the nucleus and promotes caspase-independent cell death induced by glutamate toxicity, oxidative stress, hypoxia, or ischemia. However, the mechanism by which AIF is released from mitochondria after neuronal injury is not fully understood. In this study, we identified calpain I as a direct activator of AIF release in neuronal cultures challenged with oxygen–glucose deprivation and in the rat model of transient global ischemia. Normally residing in both neuronal cytosol and mitochondrial intermembrane space, calpain I was found to be activated in neurons after ischemia and to cleave intramitochondrial AIF near its N terminus. The truncation of AIF by calpain activity appeared to be essential for its translocation from mitochondria to the nucleus, because neuronal transfection of the mutant AIF resistant to calpain cleavage was not released after oxygen–glucose deprivation. Adeno-associated virus-mediated overexpression of calpastatin, a specific calpain-inhibitory protein, or small interfering RNA-mediated knockdown of calpain I expression in neurons prevented ischemia-induced AIF translocation. Moreover, overexpression of calpastatin or knockdown of AIF expression conferred neuroprotection against cell death in neuronal cultures and in hippocampal CA1 neurons after transient global ischemia. Together, these results define calpain I-dependent AIF release as a novel signaling pathway that mediates neuronal cell death after cerebral ischemia.


Journal of Cerebral Blood Flow and Metabolism | 2005

Neuroprotection against focal ischemic brain injury by inhibition of c-Jun N-terminal kinase and attenuation of the mitochondrial apoptosis-signaling pathway.

Yanqin Gao; Armando P. Signore; Wei Yin; Guodong Cao; Xiao Ming Yin; Fengyan Sun; Yumin Luo; Steven H. Graham; Jun Chen

c-Jun N-terminal kinase (JNK) is an important stress-responsive kinase that is activated by various forms of brain insults. In this study, we have examined the role of JNK activation in neuronal cell death in a murine model of focal ischemia and reperfusion; furthermore, we investigated the mechanism of JNK in apoptosis signaling, focusing on the mitochondrial-signaling pathway. We show here that JNK activity was induced in the brain 0.5 to 24 h after ischemia. Systemic administration of SP600125, a small molecule JNK-specific inhibitor, diminished JNK activity after ischemia and dose-dependently reduced infarct volume. c-Jun N-terminal kinase inhibition also attenuated ischemia-induced expression of Bim, Hrk/DP5, and Fas, but not the expression of Bcl-2 or FasL. In strong support of a role for JNK in promoting the mitochondrial apoptosis-signaling pathway, JNK inhibition prevented ischemia-induced mitochondrial translocation of Bax and Bim, release of cytochrome c and Smac, and activation of caspase-9 and caspase-3. The potential mechanism by which JNK promoted Bax translocation after ischemia was further studied using coimmunoprecipitation, and the results revealed that JNK activation caused serine phosphorylation of 14-3-3, a cytoplasmic sequestration protein of Bax, leading to Bax disassociation from 14-3-3 and subsequent translocation to mitochondria. These results confirm the role of JNK as a critical cell death mediator in ischemic brain injury, and suggest that one of the mechanisms by which JNK triggers the mitochondrial apoptosis-signaling pathway is via promoting Bax and Bim translocation.


Autophagy | 2011

Dissecting the dynamic turnover of GFP-LC3 in the autolysosome

Hong-Min Ni; Abigail Bockus; Ann L. Wozniak; Kellyann Jones; Steven A. Weinman; Xiao Ming Yin; Wen-Xing Ding

Determination of autophagic flux is essential to assess and differentiate between the induction or suppression of autophagy. Western blot analysis for free GFP fragments resulting from the degradation of GFP-LC3 within the autolysosome has been proposed as one of the autophagic flux assays. However, the exact dynamics of GFP-LC3 during the autophagy process are not clear. Moreover, the characterization of this assay in mammalian cells is limited. Here we found that lysosomal acidity is an important regulating factor for the step-wise degradation of GFP-LC3, in which the free GFP fragments are first generated but accumulate only when the lysosomal acidity is moderate, such as during rapamycin treatment. When the lysosomal acidity is high, such as during starvation in Earles balanced salt solution (EBSS), the GFP fragments are further degraded and thus do not accumulate. Much to our surprise, we found that the level of free GFP fragments increased in the presence of several late stage autophagy inhibitors, such as chloroquine or E64D plus pepstatin A. Furthermore, the amount of free GFP fragments depends on the concentrations of these inhibitors. Unsaturating concentrations of chloroquine or bafilomycin A1 increased the level of free GFP fragments while saturating concentrations did not. Data from the present study demonstrate that GFP-LC3 is degraded in a step-wise fashion in the autolysosome, in which the LC3 portion of the fusion protein appears to be more rapidly degraded than GFP. However, the amount of free GFP fragments does not necessarily correlate with autophagic flux if the lysosomal enzyme activity and pH are changed. Therefore, caution must be used when conducting the GFP-LC3 cleavage assay as a determinant of autophagic flux. In order to accurately assess autophagy, it is more appropriate to assess GFP-LC3 cleavage in the presence or absence of saturating or unsaturating concentrations of chloroquine or bafilomycin A1 together with other autophagy markers, such as levels of p62 and endogenous LC3-II.


Hepatology | 2008

Autophagy in the liver

Xiao Ming Yin; Wen-Xing Ding; Wentao Gao

A great part of our current understanding of mammalian macroautophagy is derived from studies of the liver. The term “autophagy” was introduced by Christian de Duve in part based on ultrastructural changes in rat liver following glucagon injection. Subsequent morphological, biochemical, and kinetics studies of autophagy in the liver defined the basic process of autophagosome formation, maturation, and degradation and the regulation of autophagy by hormones, phosphoinositide 3‐kinases, and mammalian target of rapamycin. It is now clear that macroautophagy in the liver is important for the balance of energy and nutrients for basic cell functions, the removal of misfolded proteins resulting from genetic mutations or pathophysiological stimulations, and the turnover of major subcellular organelles such as mitochondria, endoplasmic reticulum, and peroxisomes under both normal and pathophysiological conditions. Disturbance of autophagy function in the liver could thus have a major impact on liver physiology and liver disease. (HEPATOLOGY 2008.)


Autophagy | 2013

Functions of autophagy in normal and diseased liver

Mark J. Czaja; Wen-Xing Ding; Terrence M. Donohue; Scott L. Friedman; Jae-Sung Kim; Masaaki Komatsu; John J. Lemasters; Antoinette Lemoine; Jiandie D. Lin; Jing Hsiung James Ou; David H. Perlmutter; Glenn Randall; Ratna B. Ray; Allan Tsung; Xiao Ming Yin

Autophagy has emerged as a critical lysosomal pathway that maintains cell function and survival through the degradation of cellular components such as organelles and proteins. Investigations specifically employing the liver or hepatocytes as experimental models have contributed significantly to our current knowledge of autophagic regulation and function. The diverse cellular functions of autophagy, along with unique features of the liver and its principal cell type the hepatocyte, suggest that the liver is highly dependent on autophagy for both normal function and to prevent the development of disease states. However, instances have also been identified in which autophagy promotes pathological changes such as the development of hepatic fibrosis. Considerable evidence has accumulated that alterations in autophagy are an underlying mechanism of a number of common hepatic diseases including toxin-, drug- and ischemia/reperfusion-induced liver injury, fatty liver, viral hepatitis and hepatocellular carcinoma. This review summarizes recent advances in understanding the roles that autophagy plays in normal hepatic physiology and pathophysiology with the intent of furthering the development of autophagy-based therapies for human liver diseases.

Collaboration


Dive into the Xiao Ming Yin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyun Chen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Wentao Gao

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Donna B. Stolz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jun Chen

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge