Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hong-Suh Yim is active.

Publication


Featured researches published by Hong-Suh Yim.


Journal of Astronomy and Space Sciences | 2013

Development of a Data Reduction algorithm for Optical Wide Field Patrol

Sun-Youp Park; Kang-Hoon Keum; Seongwhan Lee; Ho Jin; Y. D. Park; Hong-Suh Yim; Jung Hyun Jo; Hong-Kyu Moon; Young-Ho Bae; Jin Choi; Young-Jun Choi; Jang-Hyun Park; Jung-Ho Lee

The detector subsystem of the Optical Wide-field Patrol (OWL) network efficiently acquires the position and time information of moving objects such as artificial satellites through its chopper system, which consists of 4 blades in front of the CCD camera. Using this system, it is possible to get more position data with the same exposure time by changing the streaks of the moving objects into many pieces with the fast rotating blades during sidereal tracking. At the same time, the time data from the rotating chopper can be acquired by the time tagger connected to the photo diode. To analyze the orbits of the targets detected in the image data of such a system, a sequential procedure of determining the positions of separated streak lines was developed that involved calculating the World Coordinate System (WCS) solution to transform the positions into equatorial coordinate systems, and finally combining the time log records from the time tagger with the transformed position data. We introduce this procedure and the preliminary results of the application of this procedure to the test observation images.


Journal of Astronomy and Space Sciences | 2009

Orbit Determination Using Angle-Only Data for MEO & GEO Satellite and Obsolete

Jin Choi; Bang-Yeop Kim; Hong-Suh Yim; Heon-Young Chang; Joh-Na Yoon; Myung-Jin Kim; Ok-Jun Hwang

인공위성 궤도 결정을 위해 한국천문연구원의 0.6m 광시야 망원경을 이용하여 중 고궤도 인공위성과 폐기위성을 관측하였다. 관측 자료는 영상처리 및 좌표 보정을 통해 장착기기에 의한 오차를 보정한다. 위성 관측 사료에서 얻은 좌표 정보는 관측 시스템의 불안정성과 끝점 결정 오차에 의해 13각초의 오차를 가진다. KODAS의 결과로 얻은 시뮬레이션 좌표와 Gauss 방법을 이용해 예비궤도 결정을 수행하고 궤도 결정에 적합한 시간 간격을 찾아보았다. 또한 미분보정을 통한 예비궤도 결정 결과의 향상을 확인하였다. 이들 결과를 평균궤도요소 형대로 변환하여 실제 관측 자료와 비교하여 에비궤도 결정을 통해서 짧은 시간동안 위성의 추적이 가능함을 확인하였으며, 미분보정을 통해 그 결과를 향상시킬 수 있음을 확인하였다. 【We used an optical observation system with a 0.6m wide-field telescope and 5 computers system in KASI (Korean Astronomy and Space Science Institute) for satellite optical observation. Optical data have errors that are caused by targeting, expose start time and end-point determination. Gauss method for initial orbit determination was tested using angle-only data simulated by KODAS. And suitable time span is confirmed for result which has minimum errors. Initial orbit determination results are proved that optical observation system in KASI is possible satellite tracking for a short period. And also through differential correction, initial orbit determination results are improved.】


Journal of Astronomy and Space Sciences | 2004

ORBIT DETERMINATION OF GPS AND KOREASAT 2 SATELLITE USING ANGLE-ONLY DATA AND REQUIREMENTS FOR OPTICAL TRACKING SYSTEM

Woo-Kyoung Lee; Hyung-Chul Lim; Pil-Ho Park; Jae-Hyuk Youn; Hong-Suh Yim; Hong-Kyu Moon

Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLB and SGP4/SDP4 orbit propagation model.. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory) and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.


Journal of Astronomy and Space Sciences | 2011

A Study on the Strategies of the Positioning of a Satellite on Observed Images by the Astronomical Telescope and the Observation and Initial Orbit Determination of Unidentified Space Objects

Jin Choi; Jung Hyun Jo; Young-Jun Choi; Gi-In Cho; Jae-Hyuk Kim; Young-Ho Bae; Hong-Suh Yim; Hong-Kyu Moon; Jang-Hyun Park

An optical tracking system has advantages for observing geostationary earth orbit (GEO) satellites relatively over other types of observation system. Regular surveying for unidentified space objects with the optical tracking system can be an early warning tool for the safety of five Korean active GEO satellites. Two strategies of positioning on the observed image of Communication, Ocean and Meteorological Satellite 1 are tested and compared. Photometric method has a half root mean square error against streak method. Also null eccentricity method for initial orbit determination (IOD) is tested with simulation data and real observation data. Under 10 minutes observation time interval, null eccentricity method shows relatively better IOD results than the other time interval. For follow-up observation of unidentified space objects, at least two consecutive observations are needed in 5 minutes to determine orbit for geosynchronous orbit space objects.


Journal of Astronomy and Space Sciences | 2011

Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

Jae-Hyuk Kim; Jung Hyun Jo; Jin Choi; Hong-Kyu Moon; Young-Jun Choi; Hong-Suh Yim; Jang-Hyun Park; Eun-Seo Park; Jong-Uk Park

The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory) were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking of domestic satellites and verified that optical observation time sufficient to maintain the precise ephemeris could be acquired at the determined observatories.


Journal of Astronomy and Space Sciences | 2009

A Study on the Deriving Requirements of ARGO Operation System

Yoon-Kyung Seo; Dong-Young Rew; Hyung-Chul Lim; In-Kwan Park; Hong-Suh Yim; Jung Hyun Jo; Jong-Uk Park

Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.


Journal of Astronomy and Space Sciences | 2015

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

Ju Young Son; Jung Hyun Jo; Jin Choi; Bang-Yeop Kim; Joh-Na Yoon; Hong-Suh Yim; Young-Jun Choi; Sun-Youp Park; Young Ho Bae; Dong-Goo Roh; Jang-Hyun Park; Ji Hye Kim

We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.


Journal of Astronomy and Space Sciences | 2015

Minimum Number of Observation Points for LEO Satellite Orbit Estimation by OWL Network

Maru Park; Jung Hyun Jo; Sungki Cho; Jin Choi; Chun-Hwey Kim; Jang-Hyun Park; Hong-Suh Yim; Young-Jun Choi; Hong-Kyu Moon; Young-Ho Bae; Sun-Youp Park; Ji Hye Kim; Dong-Goo Roh; Hyun-Jung Jang; Youngsik Park; Min-Ji Jeong

By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaimeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.


Journal of Astronomy and Space Sciences | 2010

Two-Site Optical Observation and Initial Orbit Determination for Geostationary Earth Orbit Satellites

Jin Choi; Young-Jun Choi; Hong-Suh Yim; Jung Hyun Jo; Wonyong Han

Optical observation system provides angle-only measurement for orbit determination of space object. Range measure- ment can be directly acquired using laser ranging or tone ranging system. Initial orbit determination (IOD) by using an- gle-only data set shows discrepancy according to the measurement time interval. To solve this problem, range measure- ment data should be added for IOD. In this study, two-site optical observation was used to derive the range information. We have observed nine geostationary earth orbit satellites by using two-site optical observation system. The determina- tion result of the range shows the accuracy over 99.5% compared to the results from the satellite tool kit simulation. And we confirmed that the orbit determination by the Herrick-Gibbs method with the range information obtained from the two-site observation is more accurate than the orbit determination by Gauss method with the one-site observation. For more accurate two-site optical observation, a baseline should satisfy an optimal condition of length and more precise observation system needed.


Journal of Astronomy and Space Sciences | 2016

Determining the Rotation Periods of an Inactive LEO Satellite and the First Korean Space Debris on GEO, KOREASAT 1

Jin Choi; Jung Hyun Jo; Myung-Jin Kim; Dong-Goo Roh; Sun-Youp Park; Hee-Jae Lee; Maru Park; Young-Jun Choi; Hong-Suh Yim; Young-Ho Bae; Youngsik Park; Sungki Cho; Hong-Kyu Moon; Eun-Jung Choi; Hyun-Jung Jang; Jang-Hyun Park

Copyright

Collaboration


Dive into the Hong-Suh Yim's collaboration.

Top Co-Authors

Avatar

Hong-Kyu Moon

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Dong-Goo Roh

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Young-Ho Bae

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Myung-Jin Kim

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young-Jun Choi

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Sun-Youp Park

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Jin Choi

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Jung Hyun Jo

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

Jang-Hyun Park

Korea Astronomy and Space Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge