Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hoon Ki Min is active.

Publication


Featured researches published by Hoon Ki Min.


Frontiers in Neuroscience | 2014

A neurochemical closed-loop controller for deep brain stimulation: toward individualized smart neuromodulation therapies

Peter J. Grahn; Grant W. Mallory; Obaid U. Khurram; B. Michael Berry; Jan T. Hachmann; Allan J. Bieber; Kevin E. Bennet; Hoon Ki Min; Su Youne Chang; Kendall H. Lee; J. L. Lujan

Current strategies for optimizing deep brain stimulation (DBS) therapy involve multiple postoperative visits. During each visit, stimulation parameters are adjusted until desired therapeutic effects are achieved and adverse effects are minimized. However, the efficacy of these therapeutic parameters may decline with time due at least in part to disease progression, interactions between the host environment and the electrode, and lead migration. As such, development of closed-loop control systems that can respond to changing neurochemical environments, tailoring DBS therapy to individual patients, is paramount for improving the therapeutic efficacy of DBS. Evidence obtained using electrophysiology and imaging techniques in both animals and humans suggests that DBS works by modulating neural network activity. Recently, animal studies have shown that stimulation-evoked changes in neurotransmitter release that mirror normal physiology are associated with the therapeutic benefits of DBS. Therefore, to fully understand the neurophysiology of DBS and optimize its efficacy, it may be necessary to look beyond conventional electrophysiological analyses and characterize the neurochemical effects of therapeutic and non-therapeutic stimulation. By combining electrochemical monitoring and mathematical modeling techniques, we can potentially replace the trial-and-error process used in clinical programming with deterministic approaches that help attain optimal and stable neurochemical profiles. In this manuscript, we summarize the current understanding of electrophysiological and electrochemical processing for control of neuromodulation therapies. Additionally, we describe a proof-of-principle closed-loop controller that characterizes DBS-evoked dopamine changes to adjust stimulation parameters in a rodent model of DBS. The work described herein represents the initial steps toward achieving a “smart” neuroprosthetic system for treatment of neurologic and psychiatric disorders.


NeuroImage | 2012

Deep brain stimulation induces BOLD activation in motor and non-motor networks: an fMRI comparison study of STN and EN/GPi DBS in large animals.

Hoon Ki Min; Sun Chul Hwang; Michael P. Marsh; Inyong Kim; Emily Knight; Bryan L. Striemer; Joel P. Felmlee; Kirk M. Welker; Su Youne Chang; Kevin E. Bennet; Kendall H. Lee

The combination of deep brain stimulation (DBS) and functional MRI (fMRI) is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. The goal of this study was to trace DBS-induced global neuronal network activation in a large animal model by monitoring the blood oxygenation level-dependent (BOLD) response on fMRI. We conducted DBS in normal anesthetized pigs, targeting the subthalamic nucleus (STN) (n=7) and the entopeduncular nucleus (EN), the non-primate analog of the primate globus pallidus interna (n=4). Using a normalized functional activation map for group analysis and the application of general linear modeling across subjects, we found that both STN and EN/GPi DBS significantly increased BOLD activation in the ipsilateral sensorimotor network (FDR<0.001). In addition, we found differential, target-specific, non-motor network effects. In each group the activated brain areas showed a distinctive correlation pattern forming a group of network connections. Results suggest that the scope of DBS extends beyond an ablation-like effect and that it may have modulatory effects not only on circuits that facilitate motor function but also on those involved in higher cognitive and emotional processing. Taken together, our results show that the swine model for DBS fMRI, which conforms to human implanted DBS electrode configurations and human neuroanatomy, may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS.


PLOS ONE | 2013

Nucleus Accumbens Deep Brain Stimulation Results in Insula and Prefrontal Activation: A Large Animal fMRI Study

Emily Knight; Hoon Ki Min; Sun Chul Hwang; Michael P. Marsh; Seungleal Paek; Inyong Kim; Joel P. Felmlee; Osama A. Abulseoud; Kevin E. Bennet; Mark A. Frye; Kendall H. Lee

Background Deep Brain Stimulation (DBS) of the nucleus accumbens (NAc) has previously been investigated clinically for the treatment of several psychiatric conditions, including obsessive-compulsive disorder and treatment resistant depression. However, the mechanism underlying the therapeutic benefit of DBS, including the brain areas that are activated, remains largely unknown. Here, we utilized 3.0 T functional Magnetic Resonance Imaging (fMRI) changes in Blood Oxygenation Level-Dependent (BOLD) signal to test the hypothesis that NAc/internal capsule DBS results in global neural network activation in a large animal (porcine) model Methods Animals (n = 10) were implanted in the NAc/internal capsule with DBS electrodes and received stimulation (1, 3, and 5 V, 130 Hz, and pulse widths of 100 and 500 µsec). BOLD signal changes were evaluated using a gradient echo-echo planar imaging (GRE-EPI) sequence in 3.0 T MRI. We used a normalized functional activation map for group analysis and applied general linear modeling across subjects (FDR<0.001). The anatomical location of the implanted DBS lead was confirmed with a CT scan Results We observed stimulation-evoked activation in the ipsilateral prefrontal cortex, insula, cingulate and bilateral parahippocampal region along with decrease in BOLD signal in the ipsilateral dorsal region of the thalamus. Furthermore, as the stimulation voltage increased from 3 V to 5 V, the region of BOLD signal modulation increased in insula, thalamus, and parahippocampal cortex and decreased in the cingulate and prefrontal cortex. We also demonstrated that right and left NAc/internal capsule stimulation modulates identical areas ipsilateral to the side of the stimulation Conclusions Our results suggest that NAc/internal capsule DBS results in modulation of psychiatrically important brain areas notably the prefrontal cortex, cingulate, and insular cortex, which may underlie the therapeutic effect of NAc DBS in psychiatric disorders. Finally, our fMRI setup in the large animal may be a useful platform for translational studies investigating the global neuromodulatory effects of DBS


Magnetic Resonance Imaging | 2013

Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator

Krzysztof R. Gorny; Michael F. Presti; Stephan J. Goerss; Sun C. Hwang; Dong Pyo Jang; Inyong Kim; Hoon Ki Min; Yunhong Shu; Christopher P. Favazza; Kendall H. Lee; Matt A. Bernstein

PURPOSE To present preliminary, in vivo temperature measurements during MRI of a pig implanted with a deep brain stimulation (DBS) system. MATERIALS AND METHODS DBS system (Medtronic Inc., Minneapolis, MN) was implanted in the brain of an anesthetized pig. 3.0-T MRI was performed with a T/R head coil using the low-SAR GRE EPI and IR-prepped GRE sequences (SAR: 0.42 and 0.39 W/kg, respectively), and the high-SAR 4-echo RF spin echo (SAR: 2.9 W/kg). Fluoroptic thermometry was used to directly measure RF-related heating at the DBS electrodes, and at the implantable pulse generator (IPG). For reference the measurements were repeated in the same pig at 1.5 T and, at both field strengths, in a phantom. RESULTS At 3.0T, the maximal temperature elevations at DBS electrodes were 0.46 °C and 2.3 °C, for the low- and high-SAR sequences, respectively. No heating was observed on the implanted IPG during any of the measurements. Measurements of in vivo heating differed from those obtained in the phantom. CONCLUSION The 3.0-T MRI using GRE EPI and IR-prepped GRE sequences resulted in local temperature elevations at DBS electrodes of no more than 0.46 °C. Although no extrapolation should be made to human exams and much further study will be needed, these preliminary data are encouraging for the future use 3.0-T MRI in patients with DBS.


Biological Psychiatry | 2013

Centromedian-Parafascicular Deep Brain Stimulation Induces Differential Functional Inhibition of the Motor, Associative, and Limbic Circuits in Large Animals

Joo Pyung Kim; Hoon Ki Min; Emily Knight; Penelope S. Duffy; Osama A. Abulseoud; Michael P. Marsh; Katherine M. Kelsey; Kevin E. Bennet; Mark A. Frye; Kendall H. Lee

BACKGROUND Deep brain stimulation (DBS) of the centromedian-parafascicular (CM-Pf) thalamic nuclei has been considered an option for treating Tourette syndrome. Using a large animal DBS model, this study was designed to explore the network effects of CM-Pf DBS. METHODS The combination of DBS and functional magnetic resonance imaging is a powerful means of tracing brain circuitry and testing the modulatory effects of electrical stimulation on a neuronal network in vivo. With a within-subjects design, we tested the proportional effects of CM and Pf DBS by manipulating current spread and varying stimulation contacts in healthy pigs (n = 5). RESULTS Our results suggests that CM-Pf DBS has an inhibitory modulating effect in areas that have been suggested as contributing to impaired sensory-motor and emotional processing. The results also help to define the differential neural circuitry effects of the CM and Pf with evidence of prominent sensorimotor/associative effects for CM DBS and prominent limbic/associative effects for Pf DBS. CONCLUSIONS Our results support the notion that stimulation of deep brain structures, such as the CM-Pf, modulates multiple networks with cortical effects. The networks affected by CM-Pf stimulation in this study reinforce the conceptualization of Tourette syndrome as a condition with psychiatric and motor symptoms and of CM-Pf DBS as a potentially effective tool for treating both types of symptoms.


Brain Stimulation | 2014

Subthalamic Nucleus Deep Brain Stimulation Induces Motor Network BOLD Activation: Use of a High Precision MRI Guided Stereotactic System for Nonhuman Primates

Hoon Ki Min; Erika K. Ross; Kendall H. Lee; Kendall D. Dennis; Seong Rok Han; Ju Ho Jeong; Michael P. Marsh; Bryan L. Striemer; Joel P. Felmlee; J. Luis Lujan; Steve Goerss; Penelope S. Duffy; Su Youne Chang; Kevin E. Bennet

BACKGROUND Functional magnetic resonance imaging (fMRI) is a powerful method for identifying in vivo network activation evoked by deep brain stimulation (DBS). OBJECTIVE Identify the global neural circuitry effect of subthalamic nucleus (STN) DBS in nonhuman primates (NHP). METHOD An in-house developed MR image-guided stereotactic targeting system delivered a mini-DBS stimulating electrode, and blood oxygenation level-dependent (BOLD) activation during STN DBS in healthy NHP was measured by combining fMRI with a normalized functional activation map and general linear modeling. RESULTS STN DBS significantly increased BOLD activation in the sensorimotor cortex, supplementary motor area, caudate nucleus, pedunculopontine nucleus, cingulate, insular cortex, and cerebellum (FDR < 0.001). CONCLUSION Our results demonstrate that STN DBS evokes neural network grouping within the motor network and the basal ganglia. Taken together, these data highlight the importance and specificity of neural circuitry activation patterns and functional connectivity.


Neuroscience & Biobehavioral Reviews | 2015

Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation

Claudio Da Cunha; Suelen Lucio Boschen; Alexander Gomez-A; Erika K. Ross; William S. Gibson; Hoon Ki Min; Kendall H. Lee

This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinsons disease, Huntingtons disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms.


NeuroImage | 2015

Frequency-dependent functional neuromodulatory effects on the motor network by ventral lateral thalamic deep brain stimulation in swine

Seungleal Paek; Hoon Ki Min; Inyong Kim; Emily Knight; James J. Baek; Allan J. Bieber; Kendall H. Lee; Su Youne Chang

Thalamic deep brain stimulation (DBS) is an FDA-approved neurosurgical treatment for medication-refractory essential tremor. Its therapeutic benefit is highly dependent upon stimulation frequency and voltage parameters. We investigated these stimulation parameter-dependent effects on neural network activation by performing functional magnetic resonance imaging (fMRI) during DBS of the ventral lateral (VL) thalamus and comparing the blood oxygenation level-dependent (BOLD) signals induced by multiple stimulation parameter combinations in a within-subject study of swine. Low (10 Hz) and high (130 Hz) frequency stimulation was applied at 3, 5, and 7 V in the VL thalamus of normal swine (n = 5). We found that stimulation frequency and voltage combinations differentially modulated the brain network activity in the sensorimotor cortex, the basal ganglia, and the cerebellum in a parameter-dependent manner. Notably, in the motor cortex, high frequency stimulation generated a negative BOLD response, while low frequency stimulation increased the positive BOLD response. These frequency-dependent differential effects suggest that the VL thalamus is an exemplary target for investigating functional network connectivity associated with therapeutic DBS.


Mayo Clinic proceedings | 2015

Motor and Nonmotor Circuitry Activation Induced by Subthalamic Nucleus Deep Brain Stimulation in Patients With Parkinson Disease: Intraoperative Functional Magnetic Resonance Imaging for Deep Brain Stimulation.

Emily Knight; Paola Testini; Hoon Ki Min; William S. Gibson; Krzysztof R. Gorny; Christopher P. Favazza; Joel P. Felmlee; Inyong Kim; Kirk M. Welker; Daniel A. Clayton; Bryan T. Klassen; Su Youne Chang; Kendall H. Lee

OBJECTIVE To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. PATIENTS AND METHODS Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. RESULTS We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. CONCLUSION These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01809613.


NeuroImage | 2016

Fornix deep brain stimulation circuit effect is dependent on major excitatory transmission via the nucleus accumbens

Erika K. Ross; Joo Pyung Kim; Megan L. Settell; Seong Rok Han; Hoon Ki Min; Kendall H. Lee

INTRODUCTION Deep brain stimulation (DBS) is a circuit-based treatment shown to relieve symptoms from multiple neurologic and neuropsychiatric disorders. In order to treat the memory deficit associated with Alzheimers disease (AD), several clinical trials have tested the efficacy of DBS near the fornix. Early results from these studies indicated that patients who received fornix DBS experienced an improvement in memory and quality of life, yet the mechanisms behind this effect remain controversial. It is known that transmission between the medial limbic and corticolimbic circuits plays an integral role in declarative memory, and dysfunction at the circuit level results in various forms of dementia, including AD. Here, we aimed to determine the potential underlying mechanism of fornix DBS by examining the functional circuitry and brain structures engaged by fornix DBS. METHODS A multimodal approach was employed to examine global and local temporal changes that occur in an anesthetized swine model of fornix DBS. Changes in global functional activity were measured by functional MRI (fMRI), and local neurochemical changes were monitored by fast scan cyclic voltammetry (FSCV) during electrical stimulation of the fornix. Additionally, intracranial microinfusions into the nucleus accumbens (NAc) were performed to investigate the global activity changes that occur with dopamine and glutamate receptor-specific antagonism. RESULTS Hemodynamic responses in both medial limbic and corticolimbic circuits measured by fMRI were induced by fornix DBS. Additionally, fornix DBS resulted in increases in dopamine oxidation current (corresponding to dopamine efflux) monitored by FSCV in the NAc. Finally, fornix DBS-evoked hemodynamic responses in the amygdala and hippocampus decreased following dopamine and glutamate receptor antagonism in the NAc. CONCLUSIONS The present findings suggest that fornix DBS modulates dopamine release on presynaptic dopaminergic terminals in the NAc, involving excitatory glutamatergic input, and that the medial limbic and corticolimbic circuits interact in a functional loop.

Collaboration


Dive into the Hoon Ki Min's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge