Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hrag Esfahani is active.

Publication


Featured researches published by Hrag Esfahani.


Circulation | 2014

Enhanced Expression of β3-Adrenoceptors in Cardiac Myocytes Attenuates Neurohormone-Induced Hypertrophic Remodeling Through Nitric Oxide Synthase

Catharina Belge; Johanna Hammond; Emilie Dubois-Deruy; Boris Manoury; Julien Hamelet; Christophe Beauloye; Andreas Markl; Anne-Catherine Pouleur; Luc Bertrand; Hrag Esfahani; Karima Jnaoui; Konrad R. Götz; Viacheslav O. Nikolaev; Annelies Vanderper; Paul Herijgers; Irina Lobysheva; Guido Iaccarino; Denise Hilfiker-Kleiner; Geneviève Tavernier; Dominique Langin; Chantal Dessy; Jean-Luc Balligand

Background— &bgr;1-2-adrenergic receptors (AR) are key regulators of cardiac contractility and remodeling in response to catecholamines. &bgr;3-AR expression is enhanced in diseased human myocardium, but its impact on remodeling is unknown. Methods and Results— Mice with cardiac myocyte-specific expression of human &bgr;3-AR (&bgr;3-TG) and wild-type (WT) littermates were used to compare myocardial remodeling in response to isoproterenol (Iso) or Angiotensin II (Ang II). &bgr;3-TG and WT had similar morphometric and hemodynamic parameters at baseline. &bgr;3-AR colocalized with caveolin-3, endothelial nitric oxide synthase (NOS) and neuronal NOS in adult transgenic myocytes, which constitutively produced more cyclic GMP, detected with a new transgenic FRET sensor. Iso and Ang II produced hypertrophy and fibrosis in WT mice, but not in &bgr;3-TG mice, which also had less re-expression of fetal genes and transforming growth factor &bgr;1. Protection from Iso-induced hypertrophy was reversed by nonspecific NOS inhibition at low dose Iso, and by preferential neuronal NOS inhibition at high-dose Iso. Adenoviral overexpression of &bgr;3-AR in isolated cardiac myocytes also increased NO production and attenuated hypertrophy to Iso and phenylephrine. Hypertrophy was restored on NOS or protein kinase G inhibition. Mechanistically, &bgr;3-AR overexpression inhibited phenylephrine-induced nuclear factor of activated T-cell activation. Conclusions— Cardiac-specific overexpression of &bgr;3-AR does not affect cardiac morphology at baseline but inhibits the hypertrophic response to neurohormonal stimulation in vivo and in vitro, through a NOS-mediated mechanism. Activation of the cardiac &bgr;3-AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodeling.


Journal of Molecular and Cellular Cardiology | 2014

Reduced scar maturation and contractility lead to exaggerated left ventricular dilation after myocardial infarction in mice lacking AMPKα1.

Gauthier Noppe; Cécile Dufeys; Patricia Buchlin; Nicolas Marquet; Diego Castanares-Zapatero; Magali Balteau; Nerea Hermida; Caroline Bouzin; Hrag Esfahani; Benoit Viollet; Luc Bertrand; Jean-Luc Balligand; Jean-Louis Vanoverschelde; Christophe Beauloye; Sandrine Horman

Cardiac fibroblasts (CF) are crucial in left ventricular (LV) healing and remodeling after myocardial infarction (MI). They are typically activated into myofibroblasts that express alpha-smooth muscle actin (α-SMA) microfilaments and contribute to the formation of contractile and mature collagen scars that minimize the adverse dilatation of infarcted areas. CF predominantly express the α1 catalytic subunit of AMP-activated protein kinase (AMPKα1), while AMPKα2 is the major catalytic isoform in cardiomyocytes. AMPKα2 is known to protect the heart by preserving the energy charge of cardiac myocytes during injury, but whether AMPKα1 interferes with maladaptative heart responses remains unexplored. In this study, we investigated the role of AMPKα1 in modulating LV dilatation and CF fibrosis during post-MI remodeling. AMPKα1 knockout (KO) and wild type (WT) mice were subjected to permanent ligation of the left anterior descending coronary artery. The absence of AMPKα1 was associated with increased CF proliferation in infarcted areas, while expression of the myodifferentiation marker α-SMA was decreased. Faulty maturation of myofibroblasts might derive from severe down-regulation of the non-canonical transforming growth factor-beta1/p38 mitogen-activated protein kinase (TGF-β1/p38 MAPK) pathway in KO infarcts. In addition, lysyl oxidase (LOX) protein expression was dramatically reduced in the scar of KO hearts. Although infarct size was similar in AMPK-KO and WT hearts subjected to MI, these changes resulted in compromised scar contractility, defective scar collagen maturation, and exacerbated adverse remodeling, as indicated by increased LV diastolic dimension 30days after MI. Our data genetically demonstrate the centrality of AMPKα1 in post-MI scar formation and highlight the specificity of this catalytic isoform in cardiac fibroblast/myofibroblast biology.


Pflügers Archiv: European Journal of Physiology | 2014

Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation

Virginie Montiel; E. Leon Gomez; Caroline Bouzin; Hrag Esfahani; M. Romero Perez; Irina Lobysheva; Olivier Devuyst; Chantal Dessy; Jean-Luc Balligand

The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1–AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac remodeling.


Journal of Immunology | 2015

Loss of Mouse P2Y4 Nucleotide Receptor Protects against Myocardial Infarction through Endothelin-1 Downregulation

Michael Horckmans; Hrag Esfahani; Christophe Beauloye; Sophie Clouet; Larissa Di Pietrantonio; Bernard Robaye; Jean-Luc Balligand; Jean-Marie Boeynaems; Chantal Dessy; Didier Communi

Nucleotides are released in the heart under pathological conditions, but little is known about their contribution to cardiac inflammation. The present study defines the P2Y4 nucleotide receptor, expressed on cardiac microvascular endothelial cells and involved in postnatal heart development, as an important regulator of the inflammatory response to cardiac ischemia. P2Y4-null mice displayed smaller infarcts in the left descending artery ligation model, as well as reduced neutrophil infiltration and fibrosis. Gene profiling identified inter alia endothelin-1 (ET-1) as one of the target genes of P2Y4 in ischemic heart. The reduced level of ET-1 was correlated with reduction of microvascular hyperpermeability, neutrophil infiltration, and endothelial adhesion molecule expression, and it could be explained by the decreased number of endothelial cells in P2Y4-null mice. Expression analysis of metalloproteinases and their tissue inhibitors in ischemic heart revealed reduced expression of matrix metalloproteinase (MMP)-9, reported to be potentially regulated by ET-1, and MMP-8, considered as neutrophil collagenase, as well as reduction of tissue inhibitor of MMP-1 and tissue inhibitor of MMP-4 in P2Y4-null mice. Reduction of cardiac permeability and neutrophil infiltration was also observed in P2Y4-null mice in LPS-induced inflammation model. Protection against infarction resulting from loss of P2Y4 brings new therapeutic perspectives for cardiac ischemia and remodeling.


European Heart Journal | 2018

Cardiac myocyte β3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling

Nerea Hermida; Lauriane Y.M. Michel; Hrag Esfahani; Emilie Dubois-Deruy; Joanna Hammond; Caroline Bouzin; Andreas Markl; Henri Colin; Anne Van Steenbergen; Christophe de Meester; Christophe Beauloye; Sandrine Horman; Xiaoke Yin; Manuel Mayr; Jean-Luc Balligand

Aims Human and mouse cardiac beta3-adrenergic receptors (beta3AR) exert antipathetic effects to those of beta1-2AR stimulation. We examined their role in modulating myocardial remodelling, particularly fibrosis in response to haemodynamic stress. Methods and results Mice with cardiac myocyte-specific expression of beta3AR (ADRB3-tg) or tamoxifen-inducible homozygous deletion (c-Adrb3-ko, with loxP-targeted Adrb3) were submitted to transaortic constriction. A superfusion assay was used for proteomic analysis of paracrine mediators between beta3AR-expressing cardiac myocytes and cardiac fibroblasts cultured separately. We show that cardiac beta3AR attenuate myocardial fibrosis in response to haemodynamic stress. Interstitial fibrosis and collagen content were reduced in ADRB3-tg, but augmented in c-Adrb3-ko. ADRB3 and collagen (COL1A1) expression were also inversely related in ventricular biopsies of patients with valve disease. Incubation of cardiac fibroblasts with media conditioned by hypertrophic myocytes induced fibroblast proliferation, myo-differentiation, and collagen production. These effects were abrogated upon ADRB3 expression in myocytes. Comparative shotgun proteomic analysis of the myocyte secretomes revealed a number of factors differentially regulated by beta3AR, among which connective tissue growth factor [CTGF (CCN2)] was prominently reduced. CTGF was similarly reduced in stressed hearts from ADRB3-tg, but increased in hearts from c-Adrb3-ko mice. CTGF expression was mediated by reactive oxygen species production which was reduced by ADRB3 expression in vitro and in vivo. This antioxidant and anti-fibrotic effect involved beta3AR coupling to the neuronal isoform of nitric oxide synthase (nNOS) in cardiac myocytes, as both were abrogated upon nNOS inhibition or Nos1 homozygous deletion. Conclusion Cardiac beta3AR protect from fibrosis in response to haemodynamic stress by modulating nitric oxide and oxidant stress-dependent paracrine signaling to fibroblasts. Specific agonism at beta3AR may offer a new therapeutic modality to prevent cardiac fibrosis.


Journal of Biological Chemistry | 2016

Loss of Mouse P2Y6 Nucleotide Receptor Is Associated with Physiological Macrocardia and Amplified Pathological Cardiac Hypertrophy

Sophie Clouet; Larissa Di Pietrantonio; Evangelos P. Daskalopoulos; Hrag Esfahani; Michael Horckmans; Marion Vanorle; Anne Lemaire; Jean-Luc Balligand; Christophe Beauloye; Jean-Marie Boeynaems; Didier Communi

The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced postnatal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Nebivolol prevents desensitization of β-adrenoceptor signaling and induction of cardiac hypertrophy in response to isoprenaline beyond β1-adrenoceptor blockage.

Isil Ozakca; Ebru Arioglu-Inan; Hrag Esfahani; V.Melih Altan; Jean-Luc Balligand; Gizem Kayki-Mutlu; A. Tanju Ozcelikay

The importance of chronic stimulation of β-adrenoceptors in the development of cardiac dysfunction is the rationale for the use of β-blockers in the treatment of heart failure. Nebivolol is a third-generation β-blocker, which has further properties including stimulation of endothelial nitric oxide synthase and/or β3-adrenoceptors. The aim of this study was to investigate whether nebivolol has additional effects on β-adrenoceptor-mediated functional responses along with morphologic and molecular determinants of cardiac hypertrophy compared with those of metoprolol, a selective β1-adrenoceptor blocker. Rats infused by isoprenaline (100 μg·kg(-1)·day(-1), 14 days) were randomized into three groups according to the treatment with metoprolol (30 mg·kg(-1)·day(-1)), nebivolol (10 mg·kg(-1)·day(-1)), or placebo for 13 days starting on day 1 after implantation of minipump. Both metoprolol and nebivolol caused a similar reduction on heart rate. Nebivolol mediated a significant improvement on cardiac mass, coronary flow, mRNA expression levels of sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) and atrial natriuretic peptide and phospholamban (PLN)/SERCA2a and phospho-PLN/PLN ratio compared with metoprolol and placebo. Nebivolol prevented the detrimental effects of isoprenaline infusion on isoprenaline (68% of control at 30 μM), BRL37344 (63% of control at 0.1 μM), and forskolin (64% of control at 1 μM) responses compared with metoprolol (isoprenaline, 34% of control; BRL37344, no response; forskolin, 26% of control) and placebo (isoprenaline, 33% of control; BRL37344, 28% of control; forskolin, 12% of control). Both β-blockers improved the changes in mRNA expressions of β1- and β3-adrenoceptors. Our results suggest that nebivolol partially protects the responsiveness of β-adrenoceptor signaling and the development of cardiac hypertrophy independent of its β1-adrenoceptor blocking effect.


Nature Communications | 2018

AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation.

Roselle Gélinas; Florence Mailleux; Justine Dontaine; Bénédicte Demeulder; Audrey Ginion; Evangelos P. Daskalopoulos; Hrag Esfahani; Emilie Dubois-Deruy; Benjamin Lauzier; Chantal Gauthier; Aaron K. Olson; Bertrand Bouchard; Christine Des Rosiers; Benoit Viollet; Kei Sakamoto; Jean-Luc Balligand; Jean-Louis Vanoverschelde; Christophe Beauloye; Sandrine Horman; Luc Bertrand

AMP-activated protein kinase (AMPK) has been shown to inhibit cardiac hypertrophy. Here, we show that submaximal AMPK activation blocks cardiomyocyte hypertrophy without affecting downstream targets previously suggested to be involved, such as p70 ribosomal S6 protein kinase, calcineurin/nuclear factor of activated T cells (NFAT) and extracellular signal-regulated kinases. Instead, cardiomyocyte hypertrophy is accompanied by increased protein O-GlcNAcylation, which is reversed by AMPK activation. Decreasing O-GlcNAcylation by inhibitors of the glutamine:fructose-6-phosphate aminotransferase (GFAT), blocks cardiomyocyte hypertrophy, mimicking AMPK activation. Conversely, O-GlcNAcylation-inducing agents counteract the anti-hypertrophic effect of AMPK. In vivo, AMPK activation prevents myocardial hypertrophy and the concomitant rise of O-GlcNAcylation in wild-type but not in AMPKα2-deficient mice. Treatment of wild-type mice with O-GlcNAcylation-inducing agents reverses AMPK action. Finally, we demonstrate that AMPK inhibits O-GlcNAcylation by mainly controlling GFAT phosphorylation, thereby reducing O-GlcNAcylation of proteins such as troponin T. We conclude that AMPK activation prevents cardiac hypertrophy predominantly by inhibiting O-GlcNAcylation.AMPK activation inhibits cardiac hypertrophy. Here the authors show that this occurs independently of previously proposed mechanisms and that AMPK controls the phosphorylation of the aminotransferase GFAT, thereby preventing cardiac hypertrophy through the reduction of protein O-GlcNAcylation.


JCI insight | 2017

Dnmt3a-mediated inhibition of Wnt in cardiac progenitor cells improves differentiation and remote remodeling after infarction

Aurelia De Pauw; Emilie Andre; Belaid Sekkali; Caroline Bouzin; Hrag Esfahani; Nicolas Barbier; Axelle Loriot; Charles De Smet; Laetitia Vanhoutte; Stéphane Moniotte; Bernhard Gerber; Vittoria Di Mauro; Daniele Catalucci; Olivier Feron; Denise Hilfiker-Kleiner; Jean-Luc Balligand

Adult cardiac progenitor cells (CPCs) display a low capacity to differentiate into cardiomyocytes in injured hearts, strongly limiting the regenerative capacity of the mammalian myocardium. To identify new mechanisms regulating CPC differentiation, we used primary and clonally expanded Sca-1+ CPCs from murine adult hearts in homotypic culture or coculture with cardiomyocytes. Expression kinetics analysis during homotypic culture differentiation showed downregulation of Wnt target genes concomitant with increased expression of the Wnt antagonist, Wnt inhibitory factor 1 (Wif1), which is necessary to stimulate CPC differentiation. We show that the expression of the Wif1 gene is repressed by DNA methylation and regulated by the de novo DNA methyltransferase Dnmt3a. In addition, miR-29a is upregulated early during CPC differentiation and downregulates Dnmt3a expression, thereby decreasing Wif1 gene methylation and increasing the efficiency of differentiation of Sca-1+ CPCs in vitro. Extending these findings in vivo, transient silencing of Dnmt3a in CPCs subsequently injected in the border zone of infarcted mouse hearts improved CPC differentiation in situ and remote cardiac remodeling. In conclusion, miR-29a and Dnmt3a epigenetically regulate CPC differentiation through Wnt inhibition. Remote effects on cardiac remodeling support paracrine signaling beyond the local injection site, with potential therapeutic interest for cardiac repair.


Cardiovascular Research | 2016

Paracrine nitric oxide induces expression of cardiac sarcomeric proteins in adult progenitor cells through soluble guanylyl cyclase/cyclic-guanosine monophosphate and Wnt/β-catenin inhibition

Aurelia De Pauw; Paul Massion; Belaid Sekkali; Emilie Andre; Caroline Dubroca; Jana Kmecova; Caroline Bouzin; Ann Friart; Catherine Sibille; Patrick Gilon; Delphine De Mulder; Hrag Esfahani; Adrien Strapart; Ruben Martherus; Valéry Payen; Pierre Sonveaux; Peter Brouckaert; Stefan Janssens; Jean-Luc Balligand

AIM Cardiac progenitor cells (CPC) from adult hearts can differentiate to several cell types composing the myocardium but the underlying molecular pathways are poorly characterized. We examined the role of paracrine nitric oxide (NO) in the specification of CPC to the cardiac lineage, particularly through its inhibition of the canonical Wnt/β-catenin pathway, a critical step preceding cardiac differentiation. METHODS AND RESULTS Sca1 + CPC from adult mouse hearts were isolated by magnetic-activated cell sorting and clonally expanded. Pharmacologic NO donors increased their expression of cardiac myocyte-specific sarcomeric proteins in a concentration and time-dependent manner. The optimal time window for NO efficacy coincided with up-regulation of CPC expression of Gucy1a3 (coding the alpha1 subunit of guanylyl cyclase). The effect of paracrine NO was reproduced in vitro upon co-culture of CPC with cardiac myocytes expressing a transgenic NOS3 (endothelial nitric oxide synthase) and in vivo upon injection of CPC in infarcted hearts from cardiac-specific NOS3 transgenic mice. In mono- and co-cultures, this effect was abrogated upon inhibition of soluble guanylyl cyclase or nitric oxide synthase, and was lost in CPC genetically deficient in Gucy1a3. Mechanistically, NO inhibits the constitutive activity of the canonical Wnt/β-catenin in CPC and in cell reporter assays in a guanylyl cyclase-dependent fashion. This was paralleled with decreased expression of β-catenin and down-regulation of Wnt target genes in CPC and abrogated in CPC with a stabilized, non-inhibitable β-catenin. CONCLUSIONS Exogenous or paracrine sources of NO promote the specification towards the myocyte lineage and expression of cardiac sarcomeric proteins of adult CPC. This is contingent upon the expression and activity of the alpha1 subunit of guanylyl cyclase in CPC that is necessary for NO-mediated inhibition of the canonical Wnt/β-catenin pathway.

Collaboration


Dive into the Hrag Esfahani's collaboration.

Top Co-Authors

Avatar

Jean-Luc Balligand

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Laetitia Vanhoutte

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Olivier Feron

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Stéphane Moniotte

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Bernard Gallez

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Christophe Beauloye

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Caroline Bouzin

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Chantal Dessy

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Emilie Dubois-Deruy

Cliniques Universitaires Saint-Luc

View shared research outputs
Top Co-Authors

Avatar

Luc Bertrand

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge