Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsiaoyin Mao is active.

Publication


Featured researches published by Hsiaoyin Mao.


Journal of Clinical Investigation | 2012

Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver

Shu-hao Hsu; Bo Wang; Janaiah Kota; Jianhua Yu; Stefan Costinean; Huban Kutay; Lianbo Yu; Shoumei Bai; Krista La Perle; Raghu R. Chivukula; Hsiaoyin Mao; Min Wei; K. Reed Clark; Michael A. Caligiuri; Samson T. Jacob; Joshua T. Mendell; Kalpana Ghoshal

miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.


Leukemia | 2014

CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma

Jianhong Chu; Youcai Deng; Don M. Benson; Shun He; Tiffany Hughes; Jianying Zhang; Yong Peng; Hsiaoyin Mao; Ling Yi; Kalpana Ghoshal; Xiaoming He; Steven M. Devine; Xiaoliu Zhang; Michael A. Caligiuri; Craig C. Hofmeister; Jianhua Yu

Multiple myeloma (MM) is an incurable hematological malignancy. Chimeric antigen receptor (CAR)-expressing T cells have been demonstrated successfully in the clinic to treat B-lymphoid malignancies. However, the potential utility of antigen-specific CAR-engineered natural-killer (NK) cells to treat MM has not been explored. In this study, we determined whether CS1, a surface protein that is highly expressed on MM cells, can be targeted by CAR NK cells to treat MM. We successfully generated a viral construct of a CS1-specific CAR and expressed it in human NK cells. In vitro, CS1-CAR NK cells displayed enhanced MM cytolysis and interferon-γ (IFN-γ) production, and showed a specific CS1-dependent recognition of MM cells. Ex vivo, CS1-CAR NK cells also showed similarly enhanced activities when responding to primary MM tumor cells. More importantly, in an aggressive orthotopic MM xenograft mouse model, adoptive transfer of NK-92 cells expressing CS1-CAR efficiently suppressed the growth of human IM9 MM cells and also significantly prolonged mouse survival. Thus, CS1 represents a viable target for CAR-expressing immune cells, and autologous or allogeneic transplantation of CS1-specific CAR NK cells may be a promising strategy to treat MM.


Blood | 2009

Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH17 cytokine interleukin-22

Tiffany Hughes; Brian Becknell; Susan McClory; Edward L. Briercheck; Aharon G. Freud; Xiaoli Zhang; Hsiaoyin Mao; Gerard J. Nuovo; Jianhua Yu; Michael A. Caligiuri

Considerable functional heterogeneity within human natural killer (NK) cells has been revealed through the characterization of distinct NK-cell subsets. Accordingly, a small subset of CD56(+)NKp44(+)NK cells, termed NK-22 cells, was recently described within secondary lymphoid tissue (SLT) as IL-22(-) when resting, with a minor fraction of this population becoming IL-22(+) when activated. Here we discover that the vast majority of stage 3 immature NK (iNK) cells in SLT constitutively and selectively express IL-22, a T(H)17 cytokine important for mucosal immunity, whereas earlier and later stages of NK developmental intermediates do not express IL-22. These iNK cells have a surface phenotype of CD34(-)CD117(+)CD161(+)CD94(-), largely lack expression of NKp44 and CD56, and do not produce IFN-gamma or possess cytolytic activity. In summary, stage 3 iNK cells are highly enriched for IL-22 and IL-26 messenger RNA, and IL-22 protein production, but do not express IL-17A or IL-17F.


Journal of Immunology | 2008

TGF-β Utilizes SMAD3 to Inhibit CD16-Mediated IFN-γ Production and Antibody-Dependent Cellular Cytotoxicity in Human NK Cells

Rossana Trotta; Jessica Dal Col; Jianhua Yu; David Ciarlariello; Brittany Thomas; Xiaoli Zhang; Jeffrey Allard; Min Wei; Hsiaoyin Mao; John C. Byrd; Danilo Perrotti; Michael A. Caligiuri

TGF-β can be a potent suppressor of lymphocyte effector cell functions and can mediate these effects via distinct molecular pathways. The role of TGF-β in regulating CD16-mediated NK cell IFN-γ production and antibody-dependent cellular cytotoxicity (ADCC) is unclear, as are the signaling pathways that may be utilized. Treatment of primary human NK cells with TGF-β inhibited IFN-γ production induced by CD16 activation with or without IL-12 or IL-2, and it did so without affecting the phosphorylation/activation of MAP kinases ERK and p38, as well as STAT4. TGF-β treatment induced SMAD3 phosphorylation, and ectopic overexpression of SMAD3 resulted in a significant decrease in IFN-γ gene expression following CD16 activation with or without IL-12 or IL-2. Likewise, NK cells obtained from smad3−/− mice produced more IFN-γ in response to CD16 activation plus IL-12 when compared with NK cells obtained from wild-type mice. Coactivation of human NK cells via CD16 and IL-12 induced expression of T-BET, the positive regulator of IFN-γ, and T-BET was suppressed by TGF-β and by SMAD3 overexpression. An extended treatment of primary NK cells with TGF-β was required to inhibit ADCC, and it did so by inhibiting granzyme A and granzyme B expression. This effect was accentuated in cells overexpressing SMAD3. Collectively, our results indicate that TGF-β inhibits CD16-mediated human NK cell IFN-γ production and ADCC, and these effects are mediated via SMAD3.


Nature Medicine | 2012

NK cells impede glioblastoma virotherapy through NKp30 and NKp46 natural cytotoxicity receptors

Christopher Alvarez-Breckenridge; Jianhua Yu; Richard L. Price; Jeffrey Wojton; Jason C. Pradarelli; Hsiaoyin Mao; Min Wei; Yan Wang; Shun He; Jayson Hardcastle; Soledad Fernandez; Balveen Kaur; Sean E. Lawler; Eric Vivier; Ofer Mandelboim; Alessandro Moretta; Michael A. Caligiuri; E. Antonio Chiocca

The role of the immune response to oncolytic Herpes simplex viral (oHSV) therapy for glioblastoma is controversial because it might enhance or inhibit efficacy. We found that within hours of oHSV infection of glioblastomas in mice, activated natural killer (NK) cells are recruited to the site of infection. This response substantially diminished the efficacy of glioblastoma virotherapy. oHSV-activated NK cells coordinated macrophage and microglia activation within tumors. In vitro, human NK cells preferentially lysed oHSV-infected human glioblastoma cell lines. This enhanced killing depended on the NK cell natural cytotoxicity receptors (NCRs) NKp30 and NKp46, whose ligands are upregulated in oHSV-infected glioblastoma cells. We found that HSV titers and oHSV efficacy are increased in Ncr1−/− mice and a Ncr1−/− NK cell adoptive transfer model of glioma, respectively. These results demonstrate that glioblastoma virotherapy is limited partially by an antiviral NK cell response involving specific NCRs, uncovering new potential targets to enhance cancer virotherapy.


Immunity | 2015

Transcription factor foxo1 is a negative regulator of natural killer cell maturation and function

Youcai Deng; Yann M. Kerdiles; Jianhong Chu; Shunzong Yuan; Youwei Wang; Xilin Chen; Hsiaoyin Mao; Lingling Zhang; Jianying Zhang; Tiffany Hughes; Yafei Deng; Qi Zhang; Fangjie Wang; Xianghong Zou; Chang Gong Liu; Aharon G. Freud; Xiaohui Li; Michael A. Caligiuri; Eric Vivier; Jianhua Yu

Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes by upregulating CD62L expression and inhibited late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21(+/-) mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions.


Blood | 2013

MicroRNAs activate natural killer cells through Toll-like receptor signaling.

Shun He; Jianhong Chu; Lai-Chu Wu; Hsiaoyin Mao; Yong Peng; Christopher Alvarez-Breckenridge; Tiffany Hughes; Min Wei; Jianying Zhang; Shunzong Yuan; Sumeet Sandhu; Sumithira Vasu; Don M. Benson; Craig C. Hofmeister; Xiaoming He; Kalpana Ghoshal; Steven M. Devine; Michael A. Caligiuri; Jianhua Yu

MicroRNAs (miRNAs) bind to complementary sequences of target mRNAs, resulting in translational repression or target degradation and thus gene silencing. miRNAs are abundant in circulating blood, yet it is not known whether, as a class of regulatory molecules, they interact with human natural killer (NK) cells. Here we found that the treatment of human NK cells with several mature miRNAs in the presence of a low concentration of interleukin-12 induced CD69 expression, interferon-γ production, and degranulation marker CD107a expression. In vivo, infusion of several miRNAs alone in murine peripheral blood also resulted in comparable NK-cell activation, but not T-cell activation. Furthermore, miRNA administration significantly protected mice from tumor development in an NK cell-dependent manner. Mechanistically, we found that miRNA stimulation led to downstream activation of nuclear factor κB (NF-κB), an effect that was blunted by a block in Toll-like receptor 1(TLR1) signaling and attenuated in lymphoma patients. Knockdown of TLR1 resulted in less activation by miRNAs. Collectively, we show that miRNAs have a capacity to selectively activate innate immune effector cells that is, at least in part, via the TLR1-NF-κB signaling pathway. This may be important in the normal host defense against infection and/or malignant transformation.


Journal of Clinical Investigation | 2011

NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human

Jianhua Yu; Takeki Mitsui; Min Wei; Hsiaoyin Mao; Jonathan P. Butchar; Mithun Vinod Shah; Jianying Zhang; Anjali Mishra; Christopher Alvarez-Breckenridge; Xingluo Liu; Shujun Liu; Akihiko Yokohama; Rossana Trotta; Guido Marcucci; Don M. Benson; Thomas P. Loughran; Susheela Tridandapani; Michael A. Caligiuri

IL-15 may have a role in the development of T cell large granular lymphocyte (T-LGL) or NKT leukemias. However, the mechanisms of action and the identity of the cell subset that undergoes leukemic transformation remain elusive. Here we show that in both mice and humans, NKp46 expression marks a minute population of WT NKT cells with higher activity and potency to become leukemic. Virtually 100% of T-LGL leukemias in IL-15 transgenic mice expressed NKp46, as did a majority of human T-LGL leukemias. The minute NKp46+ NKT population, but not the NKp46⁻ NKT population, was selectively expanded by overexpression of endogenous IL-15. Importantly, IL-15 transgenic NKp46⁻ NKT cells did not become NKp46+ in vivo, suggesting that NKp46+ T-LGL leukemia cells were the malignant counterpart of the minute WT NKp46+ NKT population. Mechanistically, NKp46+ NKT cells possessed higher responsiveness to IL-15 in vitro and in vivo compared with that of their NKp46⁻ NKT counterparts. Furthermore, interruption of IL-15 signaling using a neutralizing antibody could prevent LGL leukemia in IL-15 transgenic mice. Collectively, our data demonstrate that NKp46 identifies a functionally distinct NKT subset in mice and humans that appears to be directly susceptible to leukemic transformation when IL-15 is overexpressed. Thus, IL-15 signaling and NKp46 may be useful targets in the treatment of patients with T-LGL or NKT leukemia.


European Journal of Immunology | 2007

Transcriptional control of human T-BET expression : The role of Sp1

Jianhua Yu; Min Wei; Zachary Boyd; Esther Lehmann; Rossana Trotta; Hsiaoyin Mao; Shujun Liu; Brian Becknell; Michael S. Jaung; David Jarjoura; Guido Marcucci; Lai-Chu Wu; Michael A. Caligiuri

Murine T‐bet (T‐box expressed in T cells) is a master regulator of IFN‐γ gene expression in NK and T cells. T‐bet also plays a critical role in autoimmunity, asthma and other diseases. However, cis elements or trans factors responsible for regulating T‐bet expression remain largely unknown. Here, we report on our discovery of six Sp1‐binding sites within the proximal human T‐BET promoter that are highly conserved among mammalian species. Electrophoretic mobility shift assays demonstrate a physical association between Sp1 and the proximal T‐BET promoter with a direct dose response between Sp1 expression and T‐BET promoter activity. Ectopic overexpression of Sp1 also enhanced T‐BET expression and cytokine‐induced IFN‐γ secretion in NK cells and T cells. Mithramycin A, which blocks the binding of Sp1 to the T‐BET promoter, diminished both T‐BET expression and IFN‐γ protein production in monokine‐stimulated primary human NK cells. Collectively, our results suggest that Sp1 is a positive transcriptional regulator of T‐BET. As T‐BET and IFN‐γ are critically important in inflammation, infection, and cancer, targeting Sp1, possibly with mithramycin A, may be useful for preventing and/or treating diseases associated with aberrant T‐BET or IFN‐γ expression.


Blood | 2011

The PP2A inhibitor SET regulates granzyme B expression in human natural killer cells

Rossana Trotta; David Ciarlariello; Jessica Dal Col; Hsiaoyin Mao; Li Chen; Edward L. Briercheck; Jianhua Yu; Jianying Zhang; Danilo Perrotti; Michael A. Caligiuri

The ability of natural killer (NK) cells to kill malignant or infected cells depends on the integration of signals from different families of cell surface receptors, including cytokine receptors. How such signals then regulate NK-cell cytotoxicity is incompletely understood. Here we analyzed an endogenous inhibitor of protein phosphatase 2A (PP2A) activity called SET, and its role in regulating human NK-cell cytotoxicity and its mechanism of action in human NK cells. RNAi-mediated suppression of SET down-modulates NK-cell cytotoxicity, whereas ectopic overexpression of SET enhances cytotoxicity. SET knockdown inhibits both mRNA and protein granzyme B expression, as well as perforin expression, whereas SET overexpression enhances granzyme B expression. Treatment of NK cells with the PP2A activator 1,9-dideoxy-forskolin also inhibits both granzyme B expression and cytotoxicity. In addition, pretreatment with the PP2A inhibitor okadaic acid rescues declining granzyme B mRNA levels in SET knockdown cells. Down-modulation of SET expression or activation of PP2A also decreases human NK-cell antibody-dependent cellular cytotoxicity. Finally, the induction of granzyme B gene expression by interleukin-2 and interleukin-15 is inhibited by SET knockdown. These data provide evidence that granzyme B gene expression and therefore human NK-cell cytotoxicity can be regulated by the PP2A-SET interplay.

Collaboration


Dive into the Hsiaoyin Mao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Wei

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shujun Liu

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Brian Becknell

Nationwide Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge