Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huaiyang Jiang is active.

Publication


Featured researches published by Huaiyang Jiang.


BMC Microbiology | 2007

Subtle genetic changes enhance virulence of methicillin resistant and sensitive Staphylococcus aureus

Sarah K. Highlander; Kristina G. Hulten; Xiang Qin; Huaiyang Jiang; Shailaja Yerrapragada; Edward O. Mason; Yue Shang; Tiffany M. Williams; Régine M Fortunov; Yamei Liu; Okezie Igboeli; Joseph F. Petrosino; Madhan R. Tirumalai; Akif Uzman; George E. Fox; Ana Maria Cardenas; Donna M. Muzny; Lisa Hemphill; Yan Ding; Shannon Dugan; Peter R Blyth; Christian Buhay; Huyen Dinh; Alicia Hawes; Michael Holder; Christie Kovar; Sandra L. Lee; Wen Liu; Lynne V. Nazareth; Qiaoyan Wang

BackgroundCommunity acquired (CA) methicillin-resistant Staphylococcus aureus (MRSA) increasingly causes disease worldwide. USA300 has emerged as the predominant clone causing superficial and invasive infections in children and adults in the USA. Epidemiological studies suggest that USA300 is more virulent than other CA-MRSA. The genetic determinants that render virulence and dominance to USA300 remain unclear.ResultsWe sequenced the genomes of two pediatric USA300 isolates: one CA-MRSA and one CA-methicillin susceptible (MSSA), isolated at Texas Childrens Hospital in Houston. DNA sequencing was performed by Sanger dideoxy whole genome shotgun (WGS) and 454 Life Sciences pyrosequencing strategies. The sequence of the USA300 MRSA strain was rigorously annotated. In USA300-MRSA 2658 chromosomal open reading frames were predicted and 3.1 and 27 kilobase (kb) plasmids were identified. USA300-MSSA contained a 20 kb plasmid with some homology to the 27 kb plasmid found in USA300-MRSA. Two regions found in US300-MRSA were absent in USA300-MSSA. One of these carried the arginine deiminase operon that appears to have been acquired from S. epidermidis. The USA300 sequence was aligned with other sequenced S. aureus genomes and regions unique to USA300 MRSA were identified.ConclusionUSA300-MRSA is highly similar to other MRSA strains based on whole genome alignments and gene content, indicating that the differences in pathogenesis are due to subtle changes rather than to large-scale acquisition of virulence factor genes. The USA300 Houston isolate differs from another sequenced USA300 strain isolate, derived from a patient in San Francisco, in plasmid content and a number of sequence polymorphisms. Such differences will provide new insights into the evolution of pathogens.


Journal of Bacteriology | 2004

Complete Genome Sequence of Rickettsia typhi and Comparison with Sequences of Other Rickettsiae

Michael P. McLeod; Xiang Qin; Sandor E. Karpathy; Jason Gioia; Sarah K. Highlander; George E. Fox; Thomas Z. McNeill; Huaiyang Jiang; Donna M. Muzny; Leni S. Jacob; Alicia Hawes; Erica Sodergren; Rachel Gill; Jennifer Hume; Maggie Morgan; Guangwei Fan; Anita G. Amin; Richard A. Gibbs; Chao Hong; Xue Jie Yu; David H. Walker; George M. Weinstock

Rickettsia typhi, the causative agent of murine typhus, is an obligate intracellular bacterium with a life cycle involving both vertebrate and invertebrate hosts. Here we present the complete genome sequence of R. typhi (1,111,496 bp) and compare it to the two published rickettsial genome sequences: R. prowazekii and R. conorii. We identified 877 genes in R. typhi encoding 3 rRNAs, 33 tRNAs, 3 noncoding RNAs, and 838 proteins, 3 of which are frameshifts. In addition, we discovered more than 40 pseudogenes, including the entire cytochrome c oxidase system. The three rickettsial genomes share 775 genes: 23 are found only in R. prowazekii and R. typhi, 15 are found only in R. conorii and R. typhi, and 24 are unique to R. typhi. Although most of the genes are colinear, there is a 35-kb inversion in gene order, which is close to the replication terminus, in R. typhi, compared to R. prowazekii and R. conorii. In addition, we found a 124-kb R. typhi-specific inversion, starting 19 kb from the origin of replication, compared to R. prowazekii and R. conorii. Inversions in this region are also seen in the unpublished genome sequences of R. sibirica and R. rickettsii, indicating that this region is a hot spot for rearrangements. Genome comparisons also revealed a 12-kb insertion in the R. prowazekii genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. prowazekii and R. typhi) and spotted fever (R. conorii) groups diverged. The three-way comparison allowed further in silico analysis of the SpoT split genes, leading us to propose that the stringent response system is still functional in these rickettsiae.


BMC Genomics | 2014

Finding the missing honey bee genes: Lessons learned from a genome upgrade

Christine G. Elsik; Kim C. Worley; Anna K. Bennett; Martin Beye; Francisco Camara; Christopher P. Childers; Dirk C. de Graaf; Griet Debyser; Jixin Deng; Bart Devreese; Eran Elhaik; Jay D. Evans; Leonard J. Foster; Dan Graur; Roderic Guigó; Katharina Hoff; Michael Holder; Matthew E. Hudson; Greg J. Hunt; Huaiyang Jiang; Vandita Joshi; Radhika S. Khetani; Peter Kosarev; Christie Kovar; Jian Ma; Ryszard Maleszka; Robin F. A. Moritz; Monica Munoz-Torres; Terence Murphy; Donna M. Muzny

BackgroundThe first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes.ResultsHere, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data.ConclusionsLessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.


Genome Biology | 2008

Large scale variation in Enterococcus faecalis illustrated by the genome analysis of strain OG1RF

Agathe Bourgogne; Danielle A. Garsin; Xiang Qin; Kavindra V. Singh; Jouko Sillanpää; Shailaja Yerrapragada; Yan Ding; Shannon Dugan-Rocha; Christian Buhay; Hua Shen; Guan Chen; Gabrielle Williams; Donna M. Muzny; Arash Maadani; Kristina A. Fox; Jason Gioia; Lei Chen; Yue Shang; Cesar A. Arias; Sreedhar R. Nallapareddy; Meng Zhao; Vittal P. Prakash; Shahreen Chowdhury; Huaiyang Jiang; Richard A. Gibbs; Barbara E. Murray; Sarah K. Highlander; George M. Weinstock

BackgroundEnterococcus faecalis has emerged as a major hospital pathogen. To explore its diversity, we sequenced E. faecalis strain OG1RF, which is commonly used for molecular manipulation and virulence studies.ResultsThe 2,739,625 base pair chromosome of OG1RF was found to contain approximately 232 kilobases unique to this strain compared to V583, the only publicly available sequenced strain. Almost no mobile genetic elements were found in OG1RF. The 64 areas of divergence were classified into three categories. First, OG1RF carries 39 unique regions, including 2 CRISPR loci and a new WxL locus. Second, we found nine replacements where a sequence specific to V583 was substituted by a sequence specific to OG1RF. For example, the iol operon of OG1RF replaces a possible prophage and the vanB transposon in V583. Finally, we found 16 regions that were present in V583 but missing from OG1RF, including the proposed pathogenicity island, several probable prophages, and the cpsCDEFGHIJK capsular polysaccharide operon. OG1RF was more rapidly but less frequently lethal than V583 in the mouse peritonitis model and considerably outcompeted V583 in a murine model of urinary tract infections.ConclusionE. faecalis OG1RF carries a number of unique loci compared to V583, but the almost complete lack of mobile genetic elements demonstrates that this is not a defining feature of the species. Additionally, OG1RFs effects in experimental models suggest that mediators of virulence may be diverse between different E. faecalis strains and that virulence is not dependent on the presence of mobile genetic elements.


BMC Genomics | 2009

Bos taurus genome assembly

Yue Liu; Xiang Qin; Xing-Zhi Henry Song; Huaiyang Jiang; Yufeng Shen; K. James Durbin; Sigbjørn Lien; Matthew Kent; Marte Sodeland; Yanru Ren; Lan Zhang; Erica Sodergren; Paul Havlak; Kim C. Worley; George M. Weinstock; Richard A. Gibbs

BackgroundWe present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque.ResultsThe assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly.ConclusionThe biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.


PLOS ONE | 2007

Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032

Jason Gioia; Shailaja Yerrapragada; Xiang Qin; Huaiyang Jiang; Okezie Igboeli; Donna M. Muzny; Shannon Dugan-Rocha; Yan Ding; Alicia Hawes; Wen Liu; Lesette Perez; Christie Kovar; Huyen Dinh; Sandra L. Lee; Lynne V. Nazareth; Peter R Blyth; Michael Holder; Christian Buhay; Madhan R. Tirumalai; Yamei Liu; Indrani Dasgupta; Lina Bokhetache; Masaya Fujita; Fathi Karouia; Prahathees Eswara Moorthy; Johnathan Siefert; Akif Uzman; Prince Buzumbo; Avani Verma; Hiba Zwiya

Background Bacillus spores are notoriously resistant to unfavorable conditions such as UV radiation, γ-radiation, H2O2, desiccation, chemical disinfection, or starvation. Bacillus pumilus SAFR-032 survives standard decontamination procedures of the Jet Propulsion Lab spacecraft assembly facility, and both spores and vegetative cells of this strain exhibit elevated resistance to UV radiation and H2O2 compared to other Bacillus species. Principal Findings The genome of B. pumilus SAFR-032 was sequenced and annotated. Lists of genes relevant to DNA repair and the oxidative stress response were generated and compared to B. subtilis and B. licheniformis. Differences in conservation of genes, gene order, and protein sequences are highlighted because they potentially explain the extreme resistance phenotype of B. pumilus. The B. pumilus genome includes genes not found in B. subtilis or B. licheniformis and conserved genes with sequence divergence, but paradoxically lacks several genes that function in UV or H2O2 resistance in other Bacillus species. Significance This study identifies several candidate genes for further research into UV and H2O2 resistance. These findings will help explain the resistance of B. pumilus and are applicable to understanding sterilization survival strategies of microbes.


Journal of Bacteriology | 2006

Chromosome Rearrangement and Diversification of Francisella tularensis Revealed by the Type B (OSU18) Genome Sequence

Joseph F. Petrosino; Qin Xiang; Sandor E. Karpathy; Huaiyang Jiang; Shailaja Yerrapragada; Yamei Liu; Jason Gioia; Lisa Hemphill; Arely Gonzalez; T. M. Raghavan; Akif Uzman; George E. Fox; Sarah K. Highlander; Mason V. Reichard; Rebecca J. Morton; Kenneth D. Clinkenbeard; George M. Weinstock

The gamma-proteobacterium Francisella tularensis is one of the most infectious human pathogens, and the highly virulent organism F. tularensis subsp. tularensis (type A) and less virulent organism F. tularensis subsp. holarctica (type B) are most commonly associated with significant disease in humans and animals. Here we report the complete genome sequence and annotation for a low-passage type B strain (OSU18) isolated from a dead beaver found near Red Rock, Okla., in 1978. A comparison of the F. tularensis subsp. holarctica sequence with that of F. tularensis subsp. tularensis strain Schu4 (P. Larsson et al., Nat. Genet. 37:153-159, 2005) highlighted genetic differences that may underlie different pathogenicity phenotypes and the evolutionary relationship between type A and type B strains. Despite extensive DNA sequence identity, the most significant difference between type A and type B isolates is the striking amount of genomic rearrangement that exists between the strains. All but two rearrangements can be attributed to homologous recombination occurring between two prominent insertion elements, ISFtu1 and ISFtu2. Numerous pseudogenes have been found in the genomes and are likely contributors to the difference in virulence between the strains. In contrast, no rearrangements have been observed between the OSU18 genome and the genome of the type B live vaccine strain (LVS), and only 448 polymorphisms have been found within non-transposase-coding sequences whose homologs are intact in OSU18. Nonconservative differences between the two strains likely include the LVS attenuating mutation(s).


Journal of Bacteriology | 2006

The Genome Sequence of Mannheimia haemolytica A1: Insights into Virulence, Natural Competence, and Pasteurellaceae Phylogeny

Jason Gioia; Xiang Qin; Huaiyang Jiang; Kenneth D. Clinkenbeard; Reggie Y.C. Lo; Yamei Liu; George E. Fox; Shailaja Yerrapragada; Michael P. McLeod; Thomas Z. McNeill; Lisa Hemphill; Erica Sodergren; Qiaoyan Wang; Donna M. Muzny; Farah J. Homsi; George M. Weinstock; Sarah K. Highlander

The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes.


Genome Research | 2014

Comparative validation of the D. melanogaster modENCODE transcriptome annotation

Zhen Xia Chen; David Sturgill; Jiaxin Qu; Huaiyang Jiang; Soo Park; Nathan Boley; Ana Maria Suzuki; Anthony R. Fletcher; David C. Plachetzki; Peter C. FitzGerald; Carlo G. Artieri; Joel Atallah; Olga Barmina; James B. Brown; Kerstin P. Blankenburg; Emily Clough; Abhijit Dasgupta; Sai Gubbala; Yi Han; Joy Jayaseelan; Divya Kalra; Yoo-Ah Kim; Christie Kovar; Sandra L. Lee; Mingmei Li; James D. Malley; John H. Malone; Tittu Mathew; Nicolas R Mattiuzzo; Mala Munidasa

Accurate gene model annotation of reference genomes is critical for making them useful. The modENCODE project has improved the D. melanogaster genome annotation by using deep and diverse high-throughput data. Since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function, we have performed large-scale interspecific comparisons to increase confidence in predicted annotations. To support comparative genomics, we filled in divergence gaps in the Drosophila phylogeny by generating draft genomes for eight new species. For comparative transcriptome analysis, we generated mRNA expression profiles on 81 samples from multiple tissues and developmental stages of 15 Drosophila species, and we performed cap analysis of gene expression in D. melanogaster and D. pseudoobscura. We also describe conservation of four distinct core promoter structures composed of combinations of elements at three positions. Overall, each type of genomic feature shows a characteristic divergence rate relative to neutral models, highlighting the value of multispecies alignment in annotating a target genome that should prove useful in the annotation of other high priority genomes, especially human and other mammalian genomes that are rich in noncoding sequences. We report that the vast majority of elements in the annotation are evolutionarily conserved, indicating that the annotation will be an important springboard for functional genetic testing by the Drosophila community.


PLOS ONE | 2007

Genome sequence of Fusobacterium nucleatum subspecies polymorphum - a genetically tractable fusobacterium.

Sandor E. Karpathy; Xiang Qin; Jason Gioia; Huaiyang Jiang; Yamei Liu; Joseph F. Petrosino; Shailaja Yerrapragada; George E. Fox; Susan Kinder Haake; George M. Weinstock; Sarah K. Highlander

Fusobacterium nucleatum is a prominent member of the oral microbiota and is a common cause of human infection. F. nucleatum includes five subspecies: polymorphum, nucleatum, vincentii, fusiforme, and animalis. F. nucleatum subsp. polymorphum ATCC 10953 has been well characterized phenotypically and, in contrast to previously sequenced strains, is amenable to gene transfer. We sequenced and annotated the 2,429,698 bp genome of F. nucleatum subsp. polymorphum ATCC 10953. Plasmid pFN3 from the strain was also sequenced and analyzed. When compared to the other two available fusobacterial genomes (F. nucleatum subsp. nucleatum, and F. nucleatum subsp. vincentii) 627 open reading frames unique to F. nucleatum subsp. polymorphum ATCC 10953 were identified. A large percentage of these mapped within one of 28 regions or islands containing five or more genes. Seventeen percent of the clustered proteins that demonstrated similarity were most similar to proteins from the clostridia, with others being most similar to proteins from other gram-positive organisms such as Bacillus and Streptococcus. A ten kilobase region homologous to the Salmonella typhimurium propanediol utilization locus was identified, as was a prophage and integrated conjugal plasmid. The genome contains five composite ribozyme/transposons, similar to the CdISt IStrons described in Clostridium difficile. IStrons are not present in the other fusobacterial genomes. These findings indicate that F. nucleatum subsp. polymorphum is proficient at horizontal gene transfer and that exchange with the Firmicutes, particularly the Clostridia, is common.

Collaboration


Dive into the Huaiyang Jiang's collaboration.

Top Co-Authors

Avatar

George M. Weinstock

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jason Gioia

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Qin

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Christie Kovar

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Donna M. Muzny

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yamei Liu

University of Houston

View shared research outputs
Top Co-Authors

Avatar

Richard A. Gibbs

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge