Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huban Kutay is active.

Publication


Featured researches published by Huban Kutay.


Journal of Cellular Biochemistry | 2006

Downregulation of miR-122 in the Rodent and Human Hepatocellular Carcinomas

Huban Kutay; Shoumei Bai; Jharna Datta; Tasneem Motiwala; Igor P. Pogribny; Wendy L. Frankel; Samson T. Jacob; Kalpana Ghoshal

MicroRNAs (miRs) are conserved small non‐coding RNAs that negatively regulate gene expression. The miR profiles are markedly altered in cancers and some of them have a causal role in tumorigenesis. Here, we report changes in miR expression profile in hepatocellular carcinomas (HCCs) developed in male Fisher rats‐fed folic acid, methionine, and choline‐deficient (FMD) diet. Comparison of the miR profile by microarray analysis showed altered expression of some miRs in hepatomas compared to the livers from age‐matched rats on the normal diet. While let‐7a, miR‐21, miR‐23, miR‐130, miR‐190, and miR‐17‐92 family of genes was upregulated, miR‐122, an abundant liver‐specific miR, was downregulated in the tumors. The decrease in hepatic miR‐122 was a tumor‐specific event because it did not occur in the rats switched to the folate and methyl‐adequate diet after 36 weeks on deficient diet, which did not lead to hepatocarcinogenesis. miR‐122 was also silent in a transplanted rat hepatoma. Extrapolation of this study to human primary HCCs revealed that miR‐122 expression was significantly (P = 0.013) reduced in 10 out of 20 tumors compared to the pair‐matched control tissues. These findings suggest that the downregulation of miR‐122 is associated with hepatocarcinogenesis and could be a potential biomarker for liver cancers. J. Cell. Biochem. 99: 671–678, 2006.


Journal of Clinical Investigation | 2012

Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver

Shu-hao Hsu; Bo Wang; Janaiah Kota; Jianhua Yu; Stefan Costinean; Huban Kutay; Lianbo Yu; Shoumei Bai; Krista La Perle; Raghu R. Chivukula; Hsiaoyin Mao; Min Wei; K. Reed Clark; Michael A. Caligiuri; Samson T. Jacob; Joshua T. Mendell; Kalpana Ghoshal

miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.


Journal of Biological Chemistry | 2009

MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to Sorafenib

Shoumei Bai; Mohd W. Nasser; Bo Wang; Shu-hao Hsu; Jharna Datta; Huban Kutay; Arti Yadav; Gerard J. Nuovo; Pawan Kumar; Kalpana Ghoshal

MicroRNAs are negative regulators of protein coding genes. The liver-specific microRNA-122 (miR-122) is frequently suppressed in primary hepatocellular carcinomas (HCCs). In situ hybridization demonstrated that miR-122 is abundantly expressed in hepatocytes but barely detectable in primary human HCCs. Ectopic expression of miR-122 in nonexpressing HepG2, Hep3B, and SK-Hep-1 cells reversed their tumorigenic properties such as growth, replication potential, clonogenic survival, anchorage-independent growth, migration, invasion, and tumor formation in nude mice. Further, miR-122-expressing HCC cells retained an epithelial phenotype that correlated with reduced Vimentin expression. ADAM10 (a distintegrin and metalloprotease family 10), serum response factor (SRF), and insulin-like growth factor 1 receptor (Igf1R) that promote tumorigenesis were validated as targets of miR-122 and were repressed by the microRNA. Conversely, depletion of the endogenous miR-122 in Huh-7 cells facilitated their tumorigenic properties with concomitant up-regulation of these targets. Expression of SRF or Igf1R partially reversed tumor suppressor function of miR-122. Further, miR-122 impeded angiogenic properties of endothelial cells in vitro. Notably, ADAM10, SRF, and Igf1R were up-regulated in primary human HCCs compared with the matching liver tissue. Co-labeling studies demonstrated exclusive localization of miR-122 in the benign livers, whereas SRF predominantly expressed in HCC. More importantly, growth and clonogenic survival of miR-122-expressing HCC cells were significantly reduced upon treatment with sorafenib, a multi-kinase inhibitor clinically effective against HCC. Collectively, these results suggest that the loss of multifunctional miR-122 contributes to the malignant phenotype of HCC cells, and miR-122 mimetic alone or in combination with anticancer drugs can be a promising therapeutic regimen against liver cancer.


Molecular and Cellular Biology | 2005

5-Aza-Deoxycytidine Induces Selective Degradation of DNA Methyltransferase 1 by a Proteasomal Pathway That Requires the KEN Box, Bromo-Adjacent Homology Domain, and Nuclear Localization Signal

Kalpana Ghoshal; Jharna Datta; Sarmila Majumder; Shoumei Bai; Huban Kutay; Tasneem Motiwala; Samson T. Jacob

ABSTRACT 5-Azacytidine- and 5-aza-deoxycytidine (5-aza-CdR)-mediated reactivation of tumor suppressor genes silenced by promoter methylation has provided an alternate approach in cancer therapy. Despite the importance of epigenetic therapy, the mechanism of action of DNA-hypomethylating agents in vivo has not been completely elucidated. Here we report that among three functional DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), the maintenance methyltransferase, DNMT1, was rapidly degraded by the proteasomal pathway upon treatment of cells with these drugs. The 5-aza-CdR-induced degradation, which occurs in the nucleus, could be blocked by proteasomal inhibitors and required a functional ubiquitin-activating enzyme. The drug-induced degradation occurred even in the absence of DNA replication. Treatment of cells with other nucleoside analogs modified at C-5, 5-fluorodeoxyuridine and 5-fluorocytidine, did not induce the degradation of DNMT1. Mutation of cysteine at the catalytic site of Dnmt1 (involved in the formation of a covalent intermediate with cytidine in DNA) to serine (CS) did not impede 5-aza-CdR-induced degradation. Neither the wild type nor the catalytic site mutant of Dnmt3a or Dnmt3b was sensitive to 5-aza-CdR-mediated degradation. These results indicate that covalent bond formation between the enzyme and 5-aza-CdR-incorporated DNA is not essential for enzyme degradation. Mutation of the conserved KEN box, a targeting signal for proteasomal degradation, to AAA increased the basal level of Dnmt1 and blocked its degradation by 5-aza-CdR. Deletion of the catalytic domain increased the expression of Dnmt1 but did not confer resistance to 5-aza-CdR-induced degradation. Both the nuclear localization signal and the bromo-adjacent homology domain were essential for nuclear localization and for the 5-aza-CdR-mediated degradation of Dnmt1. Polyubiquitination of Dnmt1 in vivo and its stabilization upon treatment of cells with a proteasomal inhibitor indicate that the level of Dnmt1 is controlled by ubiquitin-dependent proteasomal degradation. Overexpression of the substrate recognition component, Cdh1 but not Cdc20, of APC (anaphase-promoting complex)/cyclosome ubiquitin ligase reduced the level of Dnmt1 in both untreated and 5-aza-CdR-treated cells. In contrast, the depletion of Cdh1 with small interfering RNA increased the basal level of DNMT1 that blocked 5-aza-CdR-induced degradation. Dnmt1 interacted with Cdh1 and colocalized in the nucleus at discrete foci. Both Dnmt1 and Cdh1 were phosphorylated in vivo, but only Cdh1 was significantly dephosphorylated upon 5-aza-CdR treatment, suggesting its involvement in initiating the proteasomal degradation of DNMT1. These results demonstrate a unique mechanism for the selective degradation of DNMT1, the maintenance DNA methyltransferase, by well-known DNA-hypomethylating agents.


Journal of Biological Chemistry | 2008

Down-regulation of Micro-RNA-1 (miR-1) in Lung Cancer SUPPRESSION OF TUMORIGENIC PROPERTY OF LUNG CANCER CELLS AND THEIR SENSITIZATION TO DOXORUBICIN-INDUCED APOPTOSIS BY miR-1

Mohd W. Nasser; Jharna Datta; Gerard J. Nuovo; Huban Kutay; Tasneem Motiwala; Sarmila Majumder; Bo Wang; Saul Suster; Samson T. Jacob; Kalpana Ghoshal

Micro-RNAs are ∼21–25-nucleotide-long noncoding RNAs that regulate gene expression primarily at the post-transcriptional level in animals. Here, we report that micro-RNA-1 (miR-1), abundant in the cardiac and smooth muscles, is expressed in the lung and is down-regulated in human primary lung cancer tissues and cell lines. In situ hybridization demonstrated localization of miR-1 in bronchial epithelial cells. The tumor suppressor C/EBPα, frequently suppressed in lung cancer, reactivated miR-1 expression in the lung cancer cells. Repressed miR-1 was also activated in lung cancer cells upon treatment with a histone deacetylase inhibitor. These observations led us to examine the antitumorigenic potential of miR-1 in lung cancer cells. Expression of miR-1 in nonexpressing A549 and H1299 cells reversed their tumorigenic properties, such as growth, replication potential, motility/migration, clonogenic survival, and tumor formation in nude mice. Exogenous miR-1 significantly reduced expression of oncogenic targets, such as MET, a receptor tyrosine kinase, and Pim-1, a Ser/Thr kinase, frequently up-regulated in lung cancer. Similarly, the levels of two additional targets, FoxP1, a transcription factor with oncogeneic property, and HDAC4 that represses differentiation-promoting genes, were reduced in miR-1-expressing cells. Conversely, depletion of miR-1 facilitated N417 cell growth with concomitant elevation of these targets. Further, ectopic miR-1 induced apoptosis in A549 cells in response to the potent anticancer drug doxorubicin. Enhanced activation of caspases 3 and 7, cleavage of their substrate PARP-1, and depletion of anti-apoptotic Mcl-1 contributed to the sensitivity of miR-1-expressing cells to doxorubicin. Thus, miR-1 has potential therapeutic application against lung cancers.


Oncogene | 2010

TGFβ-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3

Bo Wang; Shu-hao Hsu; Sarmila Majumder; Huban Kutay; Wei Huang; Samson T. Jacob; Kalpana Ghoshal

To identify microRNAs (miRNAs) that may have a causal role in hepatocarcinogenesis, we used an animal model in which C57BL/6 mice fed choline-deficient and amino acid defined (CDAA) diet develop preneoplastic lesions at 65 weeks and hepatocellular carcinomas after 84 weeks. miRNA expression profiling showed significant upregulation of miR-181b and miR-181d in the livers of mice as early as 32 weeks that persisted at preneoplastic stage. The expression of tissue inhibitor of metalloprotease 3 (TIMP3), a tumor suppressor and a validated miR-181 target, was markedly suppressed in the livers of mice fed CDAA diet. Upregulation of hepatic transforming growth factor (TGF)β and its downstream mediators Smad 2, 3 and 4 and increase in phospho-Smad2 in the liver nuclear extract correlated with elevated miR-181b/d in mice fed CDAA diet. The levels of the precursor and mature miR-181b were augmented on exposure of hepatic cells to TGFβ and were significantly reduced by small interference RNA-mediated depletion of Smad4, showing the involvement of TGFβ signaling pathway in miR-181b expression. Ectopic expression and depletion of miR-181b showed that miR-181b enhanced matrix metallopeptidases (MMP)2 and MMP9 activity and promoted growth, clonogenic survival, migration and invasion of hepatocellular carcinoma (HCC) cells that could be reversed by modulating TIMP3 level. Further, depletion of miR-181b inhibited tumor growth of HCC cells in nude mice. miR-181b also enhanced resistance of HCC cells to the anticancer drug doxorubicin. On the basis of these results, we conclude that upregulation of miR-181b at early stages of feeding CDAA diet promotes hepatocarcinogenesis.


Hepatology | 2009

Role of microRNA‐155 at early stages of hepatocarcinogenesis induced by choline‐deficient and amino acid–defined diet in C57BL/6 mice

Bo Wang; Sarmila Majumder; Gerard J. Nuovo; Huban Kutay; Stefano Volinia; Tushar Patel; Thomas D. Schmittgen; Carlo M. Croce; Kalpana Ghoshal; Samson T. Jacob

MicroRNAs (miRs) are conserved, small (20‐25 nucleotide) noncoding RNAs that negatively regulate expression of messenger RNAs (mRNAs) at the posttranscriptional level. Aberrant expression of certain microRNAs plays a causal role in tumorigenesis. Here, we report identification of hepatic microRNAs that are dysregulated at early stages of feeding C57BL/6 mice choline‐deficient and amino acid–defined (CDAA) diet that is known to promote nonalcoholic steatohepatitis (NASH)‐induced hepatocarcinogenesis after 84 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P ≤ 0.01) altered in mice fed CDAA diet for 6, 18, 32, and 65 weeks compared with those fed choline‐sufficient and amino acid–defined (CSAA) diet. Real‐time reverse transcription polymerase chain reaction (RT‐PCR) analysis demonstrated up‐regulation of oncogenic miR‐155, miR‐221/222, and miR‐21 and down‐regulation of the most abundant liver‐specific miR‐122 at early stages of hepatocarcinogenesis. Western blot analysis showed reduced expression of hepatic phosphatase and tensin homolog (PTEN) and CCAAT/enhancer binding protein beta (C/EBPβ), respective targets of miR‐21 and miR‐155, in these mice at early stages. DNA binding activity of nuclear factor kappa B (NF‐κB) that transactivates miR‐155 gene was significantly (P = 0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Furthermore, the expression of miR‐155, as measured by in situ hybridization and real‐time RT‐PCR, correlated with diet‐induced histopathological changes in the liver. Ectopic expression of miR‐155 promoted growth of hepatocellular carcinoma (HCC) cells, whereas its depletion inhibited cell growth. Notably, miR‐155 was significantly (P = 0.0004) up‐regulated in primary human HCCs with a concomitant decrease (P = 0.02) in C/EBPβ level compared with matching liver tissues. Conclusion: Temporal changes in microRNA profile occur at early stages of CDAA diet‐induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH‐induced hepatocarcinogenesis and suggest their use in the diagnosis, prognosis, and therapy of liver cancer. (HEPATOLOGY 2009.)


Cancer Research | 2007

Metallothionein Expression Is Suppressed in Primary Human Hepatocellular Carcinomas and Is Mediated through Inactivation of CCAAT/Enhancer Binding Protein α by Phosphatidylinositol 3-Kinase Signaling Cascade

Jharna Datta; Sarmila Majumder; Huban Kutay; Tasneem Motiwala; Wendy L. Frankel; Robert H. Costa; Hyuk C. Cha; Ormond A. MacDougald; Samson T. Jacob; Kalpana Ghoshal

Reactive oxygen species (ROS) resulting from chronic inflammation cause liver injury leading to transformation of regenerating hepatocytes. Metallothioneins (MT), induced at high levels by oxidative stress, are potent scavengers of ROS. Here, we report that the levels of MT-1 and MT-2A are drastically reduced in primary human hepatocellular carcinomas (HCCs) and in diethylnitrosamine-induced liver tumors in mice, which is primarily due to transcriptional repression. Expression of the transcription factor, MTF-1, essential for MT expression, and its target gene Zn-T1 that encodes the zinc transporter-1 was not significantly altered in HCCs. Inhibitors of both phosphatidylinositol 3-kinase (PI3K) and its downstream target AKT increased expression of MT genes in HCC cells but not in liver epithelial cells. Suppression of MT-1 and MT-2A by ectopic expression of the constitutively active PI3K or AKT and their up-regulation by dominant-negative PI3K or AKT mutant confirmed negative regulation of MT expression by PI3K/AKT signaling pathway. Further, treatment of cells with a specific inhibitor of glycogen synthase kinase-3 (GSK-3), a downstream effector of PI3K/AKT, inhibited MT expression specifically in HCC cells. Short interfering RNA-mediated depletion of CCAAT/enhancer binding protein alpha (C/EBPalpha), a target of GSK-3, impeded MT expression, which could not be reversed by PI3K inhibitors. DNA binding activity of C/EBPalpha and its phosphorylation at T222 and T226 by GSK-3 are required for MT expression. MTF-1 and C/EBPalpha act in concert to increase MT-2A expression, which probably explains the high level of MT expression in the liver. This study shows the role of PI3K/AKT signaling pathway and C/EBPalpha in regulation of MT expression in hepatocarcinogenesis.


Clinical Cancer Research | 2007

Methylation and silencing of protein tyrosine phosphatase receptor type O in chronic lymphocytic leukemia.

Tasneem Motiwala; Sarmila Majumder; Huban Kutay; David Spencer Smith; Donna Neuberg; David M. Lucas; John C. Byrd; Michael R. Grever; Samson T. Jacob

Purpose: Previous studies in our laboratory have shown the progressive methylation and suppression of the gene encoding protein tyrosine phosphatase, PTPRO, in the livers of rats fed a methyl-deficient diet that induces hepatocarcinogenesis. Subsequently, we observed the methylation of PTPRO in primary human lung tumors and also showed its potential tumor suppressor characteristics. The present study was undertaken to investigate whether the truncated form of PTPRO (PTPROt), specifically expressed in naïve B lymphocytes, was also methylated and suppressed in chronic lymphocytic leukemia (CLL), a disease generally affecting B lymphocytes. Experimental Design and Results: Initial screening showed that 60% of the 52 CLL samples analyzed using methylation-specific PCR assay were methylated compared with B lymphocytes from normal individuals, which were not methylated. The expression of PTPROt, as measured by semiquantitative reverse transcription-PCR, inversely correlated with methylation in the few samples tested. Analysis of additional samples (n = 50) by combined bisulfite restriction analysis showed that the PTPRO CpG island was methylated in 82% of patients with CLL compared with B lymphocytes from normal individuals. Furthermore, overall expression of PTPRO was reduced in CLL relative to normal lymphocytes. The PTPRO gene was also suppressed by methylation in the CLL cell line WaC3CD5, where it could be reactivated upon treatment with the DNA hypomethylating agent 5-AzaC. Ectopic expression of PTPROt in a nonexpressing cell line increased growth inhibition with fludarabine treatment, a therapy commonly used for CLL. Conclusion: This study reveals the potential role of PTPRO methylation and silencing in CLL tumorigenesis and also provides a novel molecular target in the epigenetic therapy.


Cancer Research | 2005

Physical and Functional Interaction of DNA Methyltransferase 3A with Mbd3 and Brg1 in Mouse Lymphosarcoma Cells

Jhrana Datta; Sarmila Majumder; Shoumei Bai; Kalpana Ghoshal; Huban Kutay; David Spencer Smith; John W. Crabb; Samson T. Jacob

Dnmt3a and Dnmt3b are de novo DNA methyltransferases that also act as transcriptional repressors independent of methyltransferase activity. To elucidate the underlying mechanism of transcriptional repression, Dnmt3a was purified from mouse lymphosarcoma cells (P1798) by extensive fractionation on five different chromatographic matrices followed by glycerol density gradient centrifugation. Liquid chromatography electrospray tandem mass spectrometry analysis of Dnmt3a-associated polypeptides identified the methyl CpG binding protein Mbd3, histone deacetylase 1(Hdac1), and components of Brg1 complex (Brg1, Baf155, and Baf57) in the purified preparation. Association of Dnmt3a with Mbd3 and Brg1 was confirmed by coimmunoprecipitation and coimmunolocalization studies. Glutathione S-transferase pulldown assay showed that the NH2-terminal ATRX homology domain of Dnmt3a interacts with the methyl CpG binding domain of Mbd3 and with both bromo and ATPase domains of Brg1. Chromatin immunoprecipitation assay revealed that all three proteins are associated with transcriptionally silent methylated metallothionein (MT-I) promoter in the mouse lymphosarcoma cells. To understand the functional significance of their association with the promoter, their role on the MT-I promoter activity was analyzed by transient transfection assay. The results showed that Mbd3 and Dnmt3a specifically inhibited the methylated promoter, and the catalytic activity of Dnmt3a was dispensable for the suppression. In contrast, the wild-type but not the ATPase-inactive mutant of Brg1 suppressed MT-I promoter irrespective of its methylation status, implicating involvement of ATP-dependent chromatin remodeling in the process. Coexpression of two of the three interacting proteins at a time augmented their repressor function. This study shows physical and functional interaction of Dnmt3a with components of nucleosome remodeling machinery.

Collaboration


Dive into the Huban Kutay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Wang

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge