Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kalpana Ghoshal is active.

Publication


Featured researches published by Kalpana Ghoshal.


Journal of Biological Chemistry | 2008

MicroRNA-221/222 Confers Tamoxifen Resistance in Breast Cancer by Targeting p27Kip1

Tyler E. Miller; Kalpana Ghoshal; Bhuvaneswari Ramaswamy; Satavisha Roy; Jharna Datta; Charles L. Shapiro; Samson T. Jacob; Sarmila Majumder

We explored the role of microRNAs (miRNAs) in acquiring resistance to tamoxifen, a drug successfully used to treat women with estrogen receptor-positive breast cancer. miRNA microarray analysis of MCF-7 cell lines that are either sensitive (parental) or resistant (4-hydroxytamoxifen-resistant (OHTR)) to tamoxifen showed significant (>1.8-fold) up-regulation of eight miRNAs and marked down-regulation (>50%) of seven miRNAs in OHTR cells compared with parental MCF-7 cells. Increased expression of three of the most promising up-regulated (miR-221, miR-222, and miR-181) and down-regulated (miR-21, miR-342, and miR-489) miRNAs was validated by real-time reverse transcription-PCR. The expression of miR-221 and miR-222 was also significantly (2-fold) elevated in HER2/neu-positive primary human breast cancer tissues that are known to be resistant to endocrine therapy compared with HER2/neu-negative tissue samples. Ectopic expression of miR-221/222 rendered the parental MCF-7 cells resistant to tamoxifen. The protein level of the cell cycle inhibitor p27Kip1, a known target of miR-221/222, was reduced by 50% in OHTR cells and by 28–50% in miR-221/222-overexpressing MCF-7 cells. Furthermore, overexpression of p27Kip1 in the resistant OHTR cells caused enhanced cell death when exposed to tamoxifen. This is the first study demonstrating a relationship between miR-221/222 expression and HER2/neu overexpression in primary breast tumors that are generally resistant to tamoxifen therapy. This finding also provides the rationale for the application of altered expression of specific miRNAs as a predictive tamoxifen-resistant breast cancer marker.


Journal of Cellular Biochemistry | 2006

Downregulation of miR-122 in the Rodent and Human Hepatocellular Carcinomas

Huban Kutay; Shoumei Bai; Jharna Datta; Tasneem Motiwala; Igor P. Pogribny; Wendy L. Frankel; Samson T. Jacob; Kalpana Ghoshal

MicroRNAs (miRs) are conserved small non‐coding RNAs that negatively regulate gene expression. The miR profiles are markedly altered in cancers and some of them have a causal role in tumorigenesis. Here, we report changes in miR expression profile in hepatocellular carcinomas (HCCs) developed in male Fisher rats‐fed folic acid, methionine, and choline‐deficient (FMD) diet. Comparison of the miR profile by microarray analysis showed altered expression of some miRs in hepatomas compared to the livers from age‐matched rats on the normal diet. While let‐7a, miR‐21, miR‐23, miR‐130, miR‐190, and miR‐17‐92 family of genes was upregulated, miR‐122, an abundant liver‐specific miR, was downregulated in the tumors. The decrease in hepatic miR‐122 was a tumor‐specific event because it did not occur in the rats switched to the folate and methyl‐adequate diet after 36 weeks on deficient diet, which did not lead to hepatocarcinogenesis. miR‐122 was also silent in a transplanted rat hepatoma. Extrapolation of this study to human primary HCCs revealed that miR‐122 expression was significantly (P = 0.013) reduced in 10 out of 20 tumors compared to the pair‐matched control tissues. These findings suggest that the downregulation of miR‐122 is associated with hepatocarcinogenesis and could be a potential biomarker for liver cancers. J. Cell. Biochem. 99: 671–678, 2006.


Journal of Clinical Investigation | 2012

Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver

Shu-hao Hsu; Bo Wang; Janaiah Kota; Jianhua Yu; Stefan Costinean; Huban Kutay; Lianbo Yu; Shoumei Bai; Krista La Perle; Raghu R. Chivukula; Hsiaoyin Mao; Min Wei; K. Reed Clark; Michael A. Caligiuri; Samson T. Jacob; Joshua T. Mendell; Kalpana Ghoshal

miR-122, an abundant liver-specific microRNA (miRNA), regulates cholesterol metabolism and promotes hepatitis C virus (HCV) replication. Reduced miR-122 expression in hepatocellular carcinoma (HCC) correlates with metastasis and poor prognosis. Nevertheless, the consequences of sustained loss of function of miR-122 in vivo have not been determined. Here, we demonstrate that deletion of mouse Mir122 resulted in hepatosteatosis, hepatitis, and the development of tumors resembling HCC. These pathologic manifestations were associated with hyperactivity of oncogenic pathways and hepatic infiltration of inflammatory cells that produce pro-tumorigenic cytokines, including IL-6 and TNF. Moreover, delivery of miR-122 to a MYC-driven mouse model of HCC strongly inhibited tumorigenesis, further supporting the tumor suppressor activity of this miRNA. These findings reveal critical functions for miR-122 in the maintenance of liver homeostasis and have important therapeutic implications, including the potential utility of miR-122 delivery for selected patients with HCC and the need for careful monitoring of patients receiving miR-122 inhibition therapy for HCV.


Journal of Biological Chemistry | 2009

MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to Sorafenib

Shoumei Bai; Mohd W. Nasser; Bo Wang; Shu-hao Hsu; Jharna Datta; Huban Kutay; Arti Yadav; Gerard J. Nuovo; Pawan Kumar; Kalpana Ghoshal

MicroRNAs are negative regulators of protein coding genes. The liver-specific microRNA-122 (miR-122) is frequently suppressed in primary hepatocellular carcinomas (HCCs). In situ hybridization demonstrated that miR-122 is abundantly expressed in hepatocytes but barely detectable in primary human HCCs. Ectopic expression of miR-122 in nonexpressing HepG2, Hep3B, and SK-Hep-1 cells reversed their tumorigenic properties such as growth, replication potential, clonogenic survival, anchorage-independent growth, migration, invasion, and tumor formation in nude mice. Further, miR-122-expressing HCC cells retained an epithelial phenotype that correlated with reduced Vimentin expression. ADAM10 (a distintegrin and metalloprotease family 10), serum response factor (SRF), and insulin-like growth factor 1 receptor (Igf1R) that promote tumorigenesis were validated as targets of miR-122 and were repressed by the microRNA. Conversely, depletion of the endogenous miR-122 in Huh-7 cells facilitated their tumorigenic properties with concomitant up-regulation of these targets. Expression of SRF or Igf1R partially reversed tumor suppressor function of miR-122. Further, miR-122 impeded angiogenic properties of endothelial cells in vitro. Notably, ADAM10, SRF, and Igf1R were up-regulated in primary human HCCs compared with the matching liver tissue. Co-labeling studies demonstrated exclusive localization of miR-122 in the benign livers, whereas SRF predominantly expressed in HCC. More importantly, growth and clonogenic survival of miR-122-expressing HCC cells were significantly reduced upon treatment with sorafenib, a multi-kinase inhibitor clinically effective against HCC. Collectively, these results suggest that the loss of multifunctional miR-122 contributes to the malignant phenotype of HCC cells, and miR-122 mimetic alone or in combination with anticancer drugs can be a promising therapeutic regimen against liver cancer.


Molecular and Cellular Biology | 2005

5-Aza-Deoxycytidine Induces Selective Degradation of DNA Methyltransferase 1 by a Proteasomal Pathway That Requires the KEN Box, Bromo-Adjacent Homology Domain, and Nuclear Localization Signal

Kalpana Ghoshal; Jharna Datta; Sarmila Majumder; Shoumei Bai; Huban Kutay; Tasneem Motiwala; Samson T. Jacob

ABSTRACT 5-Azacytidine- and 5-aza-deoxycytidine (5-aza-CdR)-mediated reactivation of tumor suppressor genes silenced by promoter methylation has provided an alternate approach in cancer therapy. Despite the importance of epigenetic therapy, the mechanism of action of DNA-hypomethylating agents in vivo has not been completely elucidated. Here we report that among three functional DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), the maintenance methyltransferase, DNMT1, was rapidly degraded by the proteasomal pathway upon treatment of cells with these drugs. The 5-aza-CdR-induced degradation, which occurs in the nucleus, could be blocked by proteasomal inhibitors and required a functional ubiquitin-activating enzyme. The drug-induced degradation occurred even in the absence of DNA replication. Treatment of cells with other nucleoside analogs modified at C-5, 5-fluorodeoxyuridine and 5-fluorocytidine, did not induce the degradation of DNMT1. Mutation of cysteine at the catalytic site of Dnmt1 (involved in the formation of a covalent intermediate with cytidine in DNA) to serine (CS) did not impede 5-aza-CdR-induced degradation. Neither the wild type nor the catalytic site mutant of Dnmt3a or Dnmt3b was sensitive to 5-aza-CdR-mediated degradation. These results indicate that covalent bond formation between the enzyme and 5-aza-CdR-incorporated DNA is not essential for enzyme degradation. Mutation of the conserved KEN box, a targeting signal for proteasomal degradation, to AAA increased the basal level of Dnmt1 and blocked its degradation by 5-aza-CdR. Deletion of the catalytic domain increased the expression of Dnmt1 but did not confer resistance to 5-aza-CdR-induced degradation. Both the nuclear localization signal and the bromo-adjacent homology domain were essential for nuclear localization and for the 5-aza-CdR-mediated degradation of Dnmt1. Polyubiquitination of Dnmt1 in vivo and its stabilization upon treatment of cells with a proteasomal inhibitor indicate that the level of Dnmt1 is controlled by ubiquitin-dependent proteasomal degradation. Overexpression of the substrate recognition component, Cdh1 but not Cdc20, of APC (anaphase-promoting complex)/cyclosome ubiquitin ligase reduced the level of Dnmt1 in both untreated and 5-aza-CdR-treated cells. In contrast, the depletion of Cdh1 with small interfering RNA increased the basal level of DNMT1 that blocked 5-aza-CdR-induced degradation. Dnmt1 interacted with Cdh1 and colocalized in the nucleus at discrete foci. Both Dnmt1 and Cdh1 were phosphorylated in vivo, but only Cdh1 was significantly dephosphorylated upon 5-aza-CdR treatment, suggesting its involvement in initiating the proteasomal degradation of DNMT1. These results demonstrate a unique mechanism for the selective degradation of DNMT1, the maintenance DNA methyltransferase, by well-known DNA-hypomethylating agents.


Journal of Biological Chemistry | 2008

Down-regulation of Micro-RNA-1 (miR-1) in Lung Cancer SUPPRESSION OF TUMORIGENIC PROPERTY OF LUNG CANCER CELLS AND THEIR SENSITIZATION TO DOXORUBICIN-INDUCED APOPTOSIS BY miR-1

Mohd W. Nasser; Jharna Datta; Gerard J. Nuovo; Huban Kutay; Tasneem Motiwala; Sarmila Majumder; Bo Wang; Saul Suster; Samson T. Jacob; Kalpana Ghoshal

Micro-RNAs are ∼21–25-nucleotide-long noncoding RNAs that regulate gene expression primarily at the post-transcriptional level in animals. Here, we report that micro-RNA-1 (miR-1), abundant in the cardiac and smooth muscles, is expressed in the lung and is down-regulated in human primary lung cancer tissues and cell lines. In situ hybridization demonstrated localization of miR-1 in bronchial epithelial cells. The tumor suppressor C/EBPα, frequently suppressed in lung cancer, reactivated miR-1 expression in the lung cancer cells. Repressed miR-1 was also activated in lung cancer cells upon treatment with a histone deacetylase inhibitor. These observations led us to examine the antitumorigenic potential of miR-1 in lung cancer cells. Expression of miR-1 in nonexpressing A549 and H1299 cells reversed their tumorigenic properties, such as growth, replication potential, motility/migration, clonogenic survival, and tumor formation in nude mice. Exogenous miR-1 significantly reduced expression of oncogenic targets, such as MET, a receptor tyrosine kinase, and Pim-1, a Ser/Thr kinase, frequently up-regulated in lung cancer. Similarly, the levels of two additional targets, FoxP1, a transcription factor with oncogeneic property, and HDAC4 that represses differentiation-promoting genes, were reduced in miR-1-expressing cells. Conversely, depletion of miR-1 facilitated N417 cell growth with concomitant elevation of these targets. Further, ectopic miR-1 induced apoptosis in A549 cells in response to the potent anticancer drug doxorubicin. Enhanced activation of caspases 3 and 7, cleavage of their substrate PARP-1, and depletion of anti-apoptotic Mcl-1 contributed to the sensitivity of miR-1-expressing cells to doxorubicin. Thus, miR-1 has potential therapeutic application against lung cancers.


Oncogene | 2010

TGFβ-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3

Bo Wang; Shu-hao Hsu; Sarmila Majumder; Huban Kutay; Wei Huang; Samson T. Jacob; Kalpana Ghoshal

To identify microRNAs (miRNAs) that may have a causal role in hepatocarcinogenesis, we used an animal model in which C57BL/6 mice fed choline-deficient and amino acid defined (CDAA) diet develop preneoplastic lesions at 65 weeks and hepatocellular carcinomas after 84 weeks. miRNA expression profiling showed significant upregulation of miR-181b and miR-181d in the livers of mice as early as 32 weeks that persisted at preneoplastic stage. The expression of tissue inhibitor of metalloprotease 3 (TIMP3), a tumor suppressor and a validated miR-181 target, was markedly suppressed in the livers of mice fed CDAA diet. Upregulation of hepatic transforming growth factor (TGF)β and its downstream mediators Smad 2, 3 and 4 and increase in phospho-Smad2 in the liver nuclear extract correlated with elevated miR-181b/d in mice fed CDAA diet. The levels of the precursor and mature miR-181b were augmented on exposure of hepatic cells to TGFβ and were significantly reduced by small interference RNA-mediated depletion of Smad4, showing the involvement of TGFβ signaling pathway in miR-181b expression. Ectopic expression and depletion of miR-181b showed that miR-181b enhanced matrix metallopeptidases (MMP)2 and MMP9 activity and promoted growth, clonogenic survival, migration and invasion of hepatocellular carcinoma (HCC) cells that could be reversed by modulating TIMP3 level. Further, depletion of miR-181b inhibited tumor growth of HCC cells in nude mice. miR-181b also enhanced resistance of HCC cells to the anticancer drug doxorubicin. On the basis of these results, we conclude that upregulation of miR-181b at early stages of feeding CDAA diet promotes hepatocarcinogenesis.


Hepatology | 2009

Role of microRNA‐155 at early stages of hepatocarcinogenesis induced by choline‐deficient and amino acid–defined diet in C57BL/6 mice

Bo Wang; Sarmila Majumder; Gerard J. Nuovo; Huban Kutay; Stefano Volinia; Tushar Patel; Thomas D. Schmittgen; Carlo M. Croce; Kalpana Ghoshal; Samson T. Jacob

MicroRNAs (miRs) are conserved, small (20‐25 nucleotide) noncoding RNAs that negatively regulate expression of messenger RNAs (mRNAs) at the posttranscriptional level. Aberrant expression of certain microRNAs plays a causal role in tumorigenesis. Here, we report identification of hepatic microRNAs that are dysregulated at early stages of feeding C57BL/6 mice choline‐deficient and amino acid–defined (CDAA) diet that is known to promote nonalcoholic steatohepatitis (NASH)‐induced hepatocarcinogenesis after 84 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P ≤ 0.01) altered in mice fed CDAA diet for 6, 18, 32, and 65 weeks compared with those fed choline‐sufficient and amino acid–defined (CSAA) diet. Real‐time reverse transcription polymerase chain reaction (RT‐PCR) analysis demonstrated up‐regulation of oncogenic miR‐155, miR‐221/222, and miR‐21 and down‐regulation of the most abundant liver‐specific miR‐122 at early stages of hepatocarcinogenesis. Western blot analysis showed reduced expression of hepatic phosphatase and tensin homolog (PTEN) and CCAAT/enhancer binding protein beta (C/EBPβ), respective targets of miR‐21 and miR‐155, in these mice at early stages. DNA binding activity of nuclear factor kappa B (NF‐κB) that transactivates miR‐155 gene was significantly (P = 0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Furthermore, the expression of miR‐155, as measured by in situ hybridization and real‐time RT‐PCR, correlated with diet‐induced histopathological changes in the liver. Ectopic expression of miR‐155 promoted growth of hepatocellular carcinoma (HCC) cells, whereas its depletion inhibited cell growth. Notably, miR‐155 was significantly (P = 0.0004) up‐regulated in primary human HCCs with a concomitant decrease (P = 0.02) in C/EBPβ level compared with matching liver tissues. Conclusion: Temporal changes in microRNA profile occur at early stages of CDAA diet‐induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH‐induced hepatocarcinogenesis and suggest their use in the diagnosis, prognosis, and therapy of liver cancer. (HEPATOLOGY 2009.)


Molecular Cell | 2014

mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues.

Stephen W. Eichhorn; Huili Guo; Sean Edward McGeary; Ricard A. Rodriguez-Mias; Chanseok Shin; Daehyun Baek; Shu-hao Hsu; Kalpana Ghoshal; Judit Villén; David P. Bartel

MicroRNAs (miRNAs) regulate target mRNAs through a combination of translational repression and mRNA destabilization, with mRNA destabilization dominating at steady state in the few contexts examined globally. Here, we extend the global steady-state measurements to additional mammalian contexts and find that regardless of the miRNA, cell type, growth condition, or translational state, mRNA destabilization explains most (66%->90%) miRNA-mediated repression. We also determine the relative dynamics of translational repression and mRNA destabilization for endogenous mRNAs as a miRNA is induced. Although translational repression occurs rapidly, its effect is relatively weak, such that by the time consequential repression ensues, the effect of mRNA destabilization dominates. These results imply that consequential miRNA-mediated repression is largely irreversible and provide other insights into the nature of miRNA-mediated regulation. They also simplify future studies, dramatically extending the known contexts and time points for which monitoring mRNA changes captures most of the direct miRNA effects.


Leukemia | 2014

CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma

Jianhong Chu; Youcai Deng; Don M. Benson; Shun He; Tiffany Hughes; Jianying Zhang; Yong Peng; Hsiaoyin Mao; Ling Yi; Kalpana Ghoshal; Xiaoming He; Steven M. Devine; Xiaoliu Zhang; Michael A. Caligiuri; Craig C. Hofmeister; Jianhua Yu

Multiple myeloma (MM) is an incurable hematological malignancy. Chimeric antigen receptor (CAR)-expressing T cells have been demonstrated successfully in the clinic to treat B-lymphoid malignancies. However, the potential utility of antigen-specific CAR-engineered natural-killer (NK) cells to treat MM has not been explored. In this study, we determined whether CS1, a surface protein that is highly expressed on MM cells, can be targeted by CAR NK cells to treat MM. We successfully generated a viral construct of a CS1-specific CAR and expressed it in human NK cells. In vitro, CS1-CAR NK cells displayed enhanced MM cytolysis and interferon-γ (IFN-γ) production, and showed a specific CS1-dependent recognition of MM cells. Ex vivo, CS1-CAR NK cells also showed similarly enhanced activities when responding to primary MM tumor cells. More importantly, in an aggressive orthotopic MM xenograft mouse model, adoptive transfer of NK-92 cells expressing CS1-CAR efficiently suppressed the growth of human IM9 MM cells and also significantly prolonged mouse survival. Thus, CS1 represents a viable target for CAR-expressing immune cells, and autologous or allogeneic transplantation of CS1-specific CAR NK cells may be a promising strategy to treat MM.

Collaboration


Dive into the Kalpana Ghoshal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo Wang

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge