Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jharna Datta is active.

Publication


Featured researches published by Jharna Datta.


Journal of Biological Chemistry | 2008

MicroRNA-221/222 Confers Tamoxifen Resistance in Breast Cancer by Targeting p27Kip1

Tyler E. Miller; Kalpana Ghoshal; Bhuvaneswari Ramaswamy; Satavisha Roy; Jharna Datta; Charles L. Shapiro; Samson T. Jacob; Sarmila Majumder

We explored the role of microRNAs (miRNAs) in acquiring resistance to tamoxifen, a drug successfully used to treat women with estrogen receptor-positive breast cancer. miRNA microarray analysis of MCF-7 cell lines that are either sensitive (parental) or resistant (4-hydroxytamoxifen-resistant (OHTR)) to tamoxifen showed significant (>1.8-fold) up-regulation of eight miRNAs and marked down-regulation (>50%) of seven miRNAs in OHTR cells compared with parental MCF-7 cells. Increased expression of three of the most promising up-regulated (miR-221, miR-222, and miR-181) and down-regulated (miR-21, miR-342, and miR-489) miRNAs was validated by real-time reverse transcription-PCR. The expression of miR-221 and miR-222 was also significantly (2-fold) elevated in HER2/neu-positive primary human breast cancer tissues that are known to be resistant to endocrine therapy compared with HER2/neu-negative tissue samples. Ectopic expression of miR-221/222 rendered the parental MCF-7 cells resistant to tamoxifen. The protein level of the cell cycle inhibitor p27Kip1, a known target of miR-221/222, was reduced by 50% in OHTR cells and by 28–50% in miR-221/222-overexpressing MCF-7 cells. Furthermore, overexpression of p27Kip1 in the resistant OHTR cells caused enhanced cell death when exposed to tamoxifen. This is the first study demonstrating a relationship between miR-221/222 expression and HER2/neu overexpression in primary breast tumors that are generally resistant to tamoxifen therapy. This finding also provides the rationale for the application of altered expression of specific miRNAs as a predictive tamoxifen-resistant breast cancer marker.


Journal of Cellular Biochemistry | 2006

Downregulation of miR-122 in the Rodent and Human Hepatocellular Carcinomas

Huban Kutay; Shoumei Bai; Jharna Datta; Tasneem Motiwala; Igor P. Pogribny; Wendy L. Frankel; Samson T. Jacob; Kalpana Ghoshal

MicroRNAs (miRs) are conserved small non‐coding RNAs that negatively regulate gene expression. The miR profiles are markedly altered in cancers and some of them have a causal role in tumorigenesis. Here, we report changes in miR expression profile in hepatocellular carcinomas (HCCs) developed in male Fisher rats‐fed folic acid, methionine, and choline‐deficient (FMD) diet. Comparison of the miR profile by microarray analysis showed altered expression of some miRs in hepatomas compared to the livers from age‐matched rats on the normal diet. While let‐7a, miR‐21, miR‐23, miR‐130, miR‐190, and miR‐17‐92 family of genes was upregulated, miR‐122, an abundant liver‐specific miR, was downregulated in the tumors. The decrease in hepatic miR‐122 was a tumor‐specific event because it did not occur in the rats switched to the folate and methyl‐adequate diet after 36 weeks on deficient diet, which did not lead to hepatocarcinogenesis. miR‐122 was also silent in a transplanted rat hepatoma. Extrapolation of this study to human primary HCCs revealed that miR‐122 expression was significantly (P = 0.013) reduced in 10 out of 20 tumors compared to the pair‐matched control tissues. These findings suggest that the downregulation of miR‐122 is associated with hepatocarcinogenesis and could be a potential biomarker for liver cancers. J. Cell. Biochem. 99: 671–678, 2006.


Journal of Biological Chemistry | 2009

MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to Sorafenib

Shoumei Bai; Mohd W. Nasser; Bo Wang; Shu-hao Hsu; Jharna Datta; Huban Kutay; Arti Yadav; Gerard J. Nuovo; Pawan Kumar; Kalpana Ghoshal

MicroRNAs are negative regulators of protein coding genes. The liver-specific microRNA-122 (miR-122) is frequently suppressed in primary hepatocellular carcinomas (HCCs). In situ hybridization demonstrated that miR-122 is abundantly expressed in hepatocytes but barely detectable in primary human HCCs. Ectopic expression of miR-122 in nonexpressing HepG2, Hep3B, and SK-Hep-1 cells reversed their tumorigenic properties such as growth, replication potential, clonogenic survival, anchorage-independent growth, migration, invasion, and tumor formation in nude mice. Further, miR-122-expressing HCC cells retained an epithelial phenotype that correlated with reduced Vimentin expression. ADAM10 (a distintegrin and metalloprotease family 10), serum response factor (SRF), and insulin-like growth factor 1 receptor (Igf1R) that promote tumorigenesis were validated as targets of miR-122 and were repressed by the microRNA. Conversely, depletion of the endogenous miR-122 in Huh-7 cells facilitated their tumorigenic properties with concomitant up-regulation of these targets. Expression of SRF or Igf1R partially reversed tumor suppressor function of miR-122. Further, miR-122 impeded angiogenic properties of endothelial cells in vitro. Notably, ADAM10, SRF, and Igf1R were up-regulated in primary human HCCs compared with the matching liver tissue. Co-labeling studies demonstrated exclusive localization of miR-122 in the benign livers, whereas SRF predominantly expressed in HCC. More importantly, growth and clonogenic survival of miR-122-expressing HCC cells were significantly reduced upon treatment with sorafenib, a multi-kinase inhibitor clinically effective against HCC. Collectively, these results suggest that the loss of multifunctional miR-122 contributes to the malignant phenotype of HCC cells, and miR-122 mimetic alone or in combination with anticancer drugs can be a promising therapeutic regimen against liver cancer.


Molecular and Cellular Biology | 2005

5-Aza-Deoxycytidine Induces Selective Degradation of DNA Methyltransferase 1 by a Proteasomal Pathway That Requires the KEN Box, Bromo-Adjacent Homology Domain, and Nuclear Localization Signal

Kalpana Ghoshal; Jharna Datta; Sarmila Majumder; Shoumei Bai; Huban Kutay; Tasneem Motiwala; Samson T. Jacob

ABSTRACT 5-Azacytidine- and 5-aza-deoxycytidine (5-aza-CdR)-mediated reactivation of tumor suppressor genes silenced by promoter methylation has provided an alternate approach in cancer therapy. Despite the importance of epigenetic therapy, the mechanism of action of DNA-hypomethylating agents in vivo has not been completely elucidated. Here we report that among three functional DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), the maintenance methyltransferase, DNMT1, was rapidly degraded by the proteasomal pathway upon treatment of cells with these drugs. The 5-aza-CdR-induced degradation, which occurs in the nucleus, could be blocked by proteasomal inhibitors and required a functional ubiquitin-activating enzyme. The drug-induced degradation occurred even in the absence of DNA replication. Treatment of cells with other nucleoside analogs modified at C-5, 5-fluorodeoxyuridine and 5-fluorocytidine, did not induce the degradation of DNMT1. Mutation of cysteine at the catalytic site of Dnmt1 (involved in the formation of a covalent intermediate with cytidine in DNA) to serine (CS) did not impede 5-aza-CdR-induced degradation. Neither the wild type nor the catalytic site mutant of Dnmt3a or Dnmt3b was sensitive to 5-aza-CdR-mediated degradation. These results indicate that covalent bond formation between the enzyme and 5-aza-CdR-incorporated DNA is not essential for enzyme degradation. Mutation of the conserved KEN box, a targeting signal for proteasomal degradation, to AAA increased the basal level of Dnmt1 and blocked its degradation by 5-aza-CdR. Deletion of the catalytic domain increased the expression of Dnmt1 but did not confer resistance to 5-aza-CdR-induced degradation. Both the nuclear localization signal and the bromo-adjacent homology domain were essential for nuclear localization and for the 5-aza-CdR-mediated degradation of Dnmt1. Polyubiquitination of Dnmt1 in vivo and its stabilization upon treatment of cells with a proteasomal inhibitor indicate that the level of Dnmt1 is controlled by ubiquitin-dependent proteasomal degradation. Overexpression of the substrate recognition component, Cdh1 but not Cdc20, of APC (anaphase-promoting complex)/cyclosome ubiquitin ligase reduced the level of Dnmt1 in both untreated and 5-aza-CdR-treated cells. In contrast, the depletion of Cdh1 with small interfering RNA increased the basal level of DNMT1 that blocked 5-aza-CdR-induced degradation. Dnmt1 interacted with Cdh1 and colocalized in the nucleus at discrete foci. Both Dnmt1 and Cdh1 were phosphorylated in vivo, but only Cdh1 was significantly dephosphorylated upon 5-aza-CdR treatment, suggesting its involvement in initiating the proteasomal degradation of DNMT1. These results demonstrate a unique mechanism for the selective degradation of DNMT1, the maintenance DNA methyltransferase, by well-known DNA-hypomethylating agents.


Journal of Biological Chemistry | 2008

Down-regulation of Micro-RNA-1 (miR-1) in Lung Cancer SUPPRESSION OF TUMORIGENIC PROPERTY OF LUNG CANCER CELLS AND THEIR SENSITIZATION TO DOXORUBICIN-INDUCED APOPTOSIS BY miR-1

Mohd W. Nasser; Jharna Datta; Gerard J. Nuovo; Huban Kutay; Tasneem Motiwala; Sarmila Majumder; Bo Wang; Saul Suster; Samson T. Jacob; Kalpana Ghoshal

Micro-RNAs are ∼21–25-nucleotide-long noncoding RNAs that regulate gene expression primarily at the post-transcriptional level in animals. Here, we report that micro-RNA-1 (miR-1), abundant in the cardiac and smooth muscles, is expressed in the lung and is down-regulated in human primary lung cancer tissues and cell lines. In situ hybridization demonstrated localization of miR-1 in bronchial epithelial cells. The tumor suppressor C/EBPα, frequently suppressed in lung cancer, reactivated miR-1 expression in the lung cancer cells. Repressed miR-1 was also activated in lung cancer cells upon treatment with a histone deacetylase inhibitor. These observations led us to examine the antitumorigenic potential of miR-1 in lung cancer cells. Expression of miR-1 in nonexpressing A549 and H1299 cells reversed their tumorigenic properties, such as growth, replication potential, motility/migration, clonogenic survival, and tumor formation in nude mice. Exogenous miR-1 significantly reduced expression of oncogenic targets, such as MET, a receptor tyrosine kinase, and Pim-1, a Ser/Thr kinase, frequently up-regulated in lung cancer. Similarly, the levels of two additional targets, FoxP1, a transcription factor with oncogeneic property, and HDAC4 that represses differentiation-promoting genes, were reduced in miR-1-expressing cells. Conversely, depletion of miR-1 facilitated N417 cell growth with concomitant elevation of these targets. Further, ectopic miR-1 induced apoptosis in A549 cells in response to the potent anticancer drug doxorubicin. Enhanced activation of caspases 3 and 7, cleavage of their substrate PARP-1, and depletion of anti-apoptotic Mcl-1 contributed to the sensitivity of miR-1-expressing cells to doxorubicin. Thus, miR-1 has potential therapeutic application against lung cancers.


Molecular Cancer Research | 2011

IL-6 Promotes Head and Neck Tumor Metastasis by Inducing Epithelial–Mesenchymal Transition via the JAK-STAT3-SNAIL Signaling Pathway

Arti Yadav; Bhavna Kumar; Jharna Datta; Theodoros N. Teknos; Pawan Kumar

Epithelial–mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell–cell junctions and cell polarity, resulting in the acquisition of migratory and invasive properties. However, the precise molecular events that initiate this complex EMT process in head and neck cancers are poorly understood. Increasing evidence suggests that tumor microenvironment plays an important role in promoting EMT in tumor cells. We have previously shown that head and neck tumors exhibit significantly higher Bcl-2 expression in tumor-associated endothelial cells and overexpression of Bcl-2 alone in tumor-associated endothelial cells was sufficient to enhance tumor metastasis of oral squamous cell carcinoma in a severe combined immunodeficient (SCID) mouse model. In this study, we show that endothelial cells expressing Bcl-2 (EC-Bcl-2), when cocultured with head and neck tumor cells (CAL27), significantly enhance EMT-related changes in tumor cells predominantly by the secretion of IL-6. Treatment with recombinant IL-6 or stable IL-6 overexpression in CAL27 cells or immortalized oral epithelial cells (IOE) significantly induced the expression of mesenchymal marker, vimentin, while repressing E-cadherin expression via the JAK/STAT3/Snail signaling pathway. These EMT-related changes were further associated with enhanced tumor and IOE cell scattering and motility. STAT3 knockdown significantly reversed IL-6–mediated tumor and IOE cell motility by inhibiting FAK activation. Furthermore, tumor cells overexpressing IL-6 showed marked increase in lymph node and lung metastasis in a SCID mouse xenograft model. Taken together, these results show a novel function for IL-6 in mediating EMT in head and neck tumor cells and increasing their metastatic potential. Mol Cancer Res; 9(12); 1658–67. ©2011 AACR.


Molecular and Cellular Biology | 2002

Inhibitors of Histone Deacetylase and DNA Methyltransferase Synergistically Activate the Methylated Metallothionein I Promoter by Activating the Transcription Factor MTF-1 and Forming an Open Chromatin Structure

Kalpana Ghoshal; Jharna Datta; Sarmila Majumder; Shoumei Bai; Xiaocheng Dong; Mark R. Parthun; Samson T. Jacob

ABSTRACT Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.


Molecular and Cellular Biology | 2005

DNA Methyltransferase 3b Regulates Nerve Growth Factor-Induced Differentiation of PC12 Cells by Recruiting Histone Deacetylase 2

Shoumei Bai; Kalpana Ghoshal; Jharna Datta; Sarmila Majumder; Sung Ok Yoon; Samson T. Jacob

ABSTRACT To elucidate the role of epigenetic reprogramming in cell- or tissue-specific differentiation, we explored the role of DNA methyltransferases (Dnmts) in the nerve growth factor (NGF)-induced differentiation of PC12 (pheochromocytoma) cells into neuronal cells. The mRNA and protein levels of de novo methyltransferase Dnmt3b increased, whereas those of Dnmt3a and Dnmt1 decreased, during NGF-induced neurite outgrowth. Dnmt3b localized in the nucleus, as well as in the growing neurites. When the expression of Dnmt3b was inhibited by antisense or small interfering RNA, PC12 cells continued to proliferate and failed to generate neurites. Cells depleted of Dnmt3b were unable to exit the cell cycle even after 6 days of NGF treatment. Furthermore, this failure in differentiation correlated with significant attenuation in tyrosine phosphorylation of TrkA (a marker for NGF-induced differentiation) and reduced the expression of neuronal markers, Hu antigen, and MAP2. The methyl-CpG content of the PC12 genome or the methylation status of repetitive elements was not significantly altered after differentiation and was not affected by Dnmt3b depletion. This was consistent with the ability of the catalytic-site mutant of Dnmt3b to induce differentiation in Dnmt3b-depleted cells after NGF treatment. The Dnmt3b-mediated differentiation was attributed to its N-terminal domain, which recruits histone deacetylase 2 (Hdac2), as demonstrated by (i) impeding of differentiation by the Hdac inhibitors, (ii) facilitation of the differentiation process by overexpression of the N-terminal domain of Dnmt3b, (iii) higher Hdac activity associated with Dnmt3b after NGF treatment, and (iv) coimmunoprecipitation and cosedimentation of Dnmt3b specifically with Hdac2 in a glycerol density gradient. These data indicate a novel role of Dnmt3b in neuronal differentiation.


Molecular Therapy | 2012

Lipid-based Nanoparticle Delivery of Pre-miR-107 Inhibits the Tumorigenicity of Head and Neck Squamous Cell Carcinoma

Longzhu Piao; Manchao Zhang; Jharna Datta; Xiujie Xie; Tizhi Su; Hong Li; Theodoros N. Teknos; Quintin Pan

Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent cancer worldwide with about 600,000 new cases diagnosed in the last year. Our laboratory showed that miR-107 expression is reduced and functions as a tumor suppressor gene in HNSCC suggesting the potential application of miR-107 as a novel anticancer therapeutic. In this study, we determined the efficiency and efficacy of cationic lipid nanoparticles to deliver pre-miR-107 (NP/pre-miR-107) in HNSCC cells in vitro and in vivo. NP/pre-miR-107 increased delivery of miR-107 into HNSCC cells by greater than 80,000-fold compared to free pre-miR-107. Levels of known miR-107 targets, protein kinase Cε (PKCε), cyclin-dependent kinase 6 (CDK6), and hypoxia-inducible factor 1-β (HIF1-β), decreased following NP/pre-miR-107 treatment. Clonogenic survival, cell invasion, and cell migration of HNSCC cells was inhibited with NP/pre-miR-107. Moreover, NP/pre-miR-107 reduced the cancer-initiating cell (CIC) population and dampened the expression of the core embryonic stem cell transcription factors, Nanog, Oct3/4, and Sox2. In a preclinical mouse model of HNSCC, systemic administration of NP/pre-miR-107 significantly retarded tumor growth by 45.2% compared to NP/pre-miR-control (P < 0.005, n = 7). Kaplan-Meier analysis showed a survival advantage for the NP/pre-miR-107 treatment group (P = 0.017). Our results demonstrate that cationic lipid nanoparticles are an effective carrier approach to deliver therapeutic miRs to HNSCC.


Cancer Research | 2007

Metallothionein Expression Is Suppressed in Primary Human Hepatocellular Carcinomas and Is Mediated through Inactivation of CCAAT/Enhancer Binding Protein α by Phosphatidylinositol 3-Kinase Signaling Cascade

Jharna Datta; Sarmila Majumder; Huban Kutay; Tasneem Motiwala; Wendy L. Frankel; Robert H. Costa; Hyuk C. Cha; Ormond A. MacDougald; Samson T. Jacob; Kalpana Ghoshal

Reactive oxygen species (ROS) resulting from chronic inflammation cause liver injury leading to transformation of regenerating hepatocytes. Metallothioneins (MT), induced at high levels by oxidative stress, are potent scavengers of ROS. Here, we report that the levels of MT-1 and MT-2A are drastically reduced in primary human hepatocellular carcinomas (HCCs) and in diethylnitrosamine-induced liver tumors in mice, which is primarily due to transcriptional repression. Expression of the transcription factor, MTF-1, essential for MT expression, and its target gene Zn-T1 that encodes the zinc transporter-1 was not significantly altered in HCCs. Inhibitors of both phosphatidylinositol 3-kinase (PI3K) and its downstream target AKT increased expression of MT genes in HCC cells but not in liver epithelial cells. Suppression of MT-1 and MT-2A by ectopic expression of the constitutively active PI3K or AKT and their up-regulation by dominant-negative PI3K or AKT mutant confirmed negative regulation of MT expression by PI3K/AKT signaling pathway. Further, treatment of cells with a specific inhibitor of glycogen synthase kinase-3 (GSK-3), a downstream effector of PI3K/AKT, inhibited MT expression specifically in HCC cells. Short interfering RNA-mediated depletion of CCAAT/enhancer binding protein alpha (C/EBPalpha), a target of GSK-3, impeded MT expression, which could not be reversed by PI3K inhibitors. DNA binding activity of C/EBPalpha and its phosphorylation at T222 and T226 by GSK-3 are required for MT expression. MTF-1 and C/EBPalpha act in concert to increase MT-2A expression, which probably explains the high level of MT expression in the liver. This study shows the role of PI3K/AKT signaling pathway and C/EBPalpha in regulation of MT expression in hepatocarcinogenesis.

Collaboration


Dive into the Jharna Datta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodoros N. Teknos

The Ohio State University Wexner Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge