Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katie Krause is active.

Publication


Featured researches published by Katie Krause.


Journal of Applied Physiology | 2009

Normal breathing pattern and arterial blood gases in awake and sleeping goats after near total destruction of the presumed pre-Bötzinger complex and the surrounding region

Katie Krause; Hubert V. Forster; Thomas Kiner; S. Davis; Joshua M. Bonis; B. Qian; L. G. Pan

Abrupt neurotoxic destruction of >70% of the pre-Bötzinger complex (preBötzC) in awake goats results in respiratory and cardiac failure (Wenninger JM, Pan LG, Klum L, Leekley T, Bastastic J, Hodges MR, Feroah TR, Davis S, Forster HV. J Appl Physiol 97: 1629-1636, 2004). However, in reduced preparations, rhythmic respiratory activity has been found in other areas of the brain stem (Huang Q, St. John WM. J Appl Physiol 64: 1405-1411, 1988; Janczewski WA, Feldman JL. J Physiol 570: 407-420, 2006; Lieske SP, Thoby-Brisson M, Telgkamo P, Ramierz JM. Nature Neurosci 3: 600-607, 2000; St. John WM, Bledsoe TA. J Appl Physiol 59: 684-690, 1985); thus we hypothesized that, when the preBötzC is destroyed incrementally over weeks, time-dependent plasticity within the respiratory network will result in a respiratory rhythm capable of maintaining normal blood gases. Microtubules were bilaterally implanted into the presumed preBötzC of seven goats. After recovery from surgery, studies were completed to establish baseline values for respiratory parameters. At weekly intervals, increasing volumes (in order 0.5, 1, 5, and 10 microl) of ibotenic acid (IA; 50 mM) were then injected into the preBötzC. All IA injections resulted in an acute tachypnea and dysrhythmia featuring augmented breaths, apneas, and increased breath-to-breath variation in breathing. In studies at night, apneas were nearly all central and occurred in the awake state. Breath-to-breath variation in breathing was greater (P < 0.05) during wakefulness than during non-rapid eye movement sleep. However, one week after the final IA injection, the breathing pattern, breath-to-breath variation, and arterial blood gases and pH were unchanged from baseline, but there was a 20% decrease in respiratory frequency (f) and CO(2) sensitivity (P < 0.05), as well as a 40% decrease in the ventilatory response to hypoxia (P < 0.001). In subsequent histological analysis of the presumed preBötzC region of lesioned goats, it was determined that there was a 90 and 92% reduction from control goats in total and neurokinin-1 receptor neurons, respectively. Therefore, it was concluded that 1) the dysrhythmic effects on breathing are state dependent; and 2) after incremental, near total destruction of the presumed preBötzC region, time-dependent plasticity within the respiratory network provides a rhythm capable of sustaining normal arterial blood gases.


Advances in Experimental Medicine and Biology | 2008

The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing

Hubert V. Forster; Paul Martino; Matthew R. Hodges; Katie Krause; Josh Bonis; S. Davis; L. G. Pan

Both carotid and intracranial chemoreceptors are critical to a normal ventilatory CO2-H+ chemosensitivity. At low levels of hypercapnia, the carotid contribution is probably greater than the central contribution but, at high levels, the intracranial chemoreceptors are dominant. The carotid chemoreceptors are also critical to maintaining a stable and normal eupneic PaCO2, but lesion-induced attenuation of intracranial CO2-H+ chemosensitivity does not consistently alter eupneic PaCO2. A major unanswered question is why do intracranial chemoreceptors in carotid body denervation (CBD) animals tolerate an acidosis during eupnea which prior to CBD elicits a marked increase in breathing.


Respiratory Physiology & Neurobiology | 2011

The effects of lesions in the dorsolateral pons on the coordination of swallowing and breathing in awake goats

Joshua M. Bonis; Suzanne Neumueller; B. D. Marshall; Katie Krause; B. Qian; L. G. Pan; Matthew R. Hodges; Hubert V. Forster

The purpose of this retrospective study was to gain insight into the contribution of the dorsolateral pons to the coordination of swallowing and breathing in awake goats. In 4 goats, cannulas were chronically implanted bilaterally through the lateral (LPBN) and medial (MPBN) parabrachial nuclei just dorsal to the Kölliker-Fuse nucleus (KFN). After >2weeks recovery from this surgery, the goats were studied for 5½h on a control day, and on separate days after receiving 1 and 10μl injections of ibotenic acid (IA) separated by 1week. The frequency of swallows did not change during the control and 1μl IA studies, but after injection of 10μl IA, there was a transient 65% increase in frequency of swallows (P<0.05). Under control conditions swallows occurred throughout the respiratory cycle, where late-E swallows accounted for 67.6% of swallows. The distribution of swallow occurrence throughout the respiratory cycle was unaffected by IA injections. Consistent with the concept that swallowing is dominant over breathing, we found that swallows increased inspiratory (T(I)) and expiratory (T(E)) time and decreased tidal volume (V(T)) of the breath of the swallow (n) and/or the subsequent (n+1) breath. Injections of 10μl IA attenuated the normal increases in T(I) and T(E) and further attenuated V(T) of the n breath. Additionally, E and I swallows reset respiratory rhythm, but injection of 1 or 10μl IA progressively attenuated this resetting, suggesting a decreased dominance over respiratory motor output with increasing IA injections. Post mortem histological analysis revealed about 50% fewer (P<0.05) neurons remained in the KFN, LPBN, and MPBN in lesioned compared to control goats. We conclude that dorsolateral pontine nuclei have a modulatory role in a hypothesized holarchical neural network regulating swallowing and breathing particularly contributing to the normal dominance of swallowing over breathing in both rhythm and motor pattern generation.


Respiratory Physiology & Neurobiology | 2007

The cerebellar fastigial nucleus contributes to CO2-H+ ventilatory sensitivity in awake goats

Paul Martino; S. Davis; C. Opansky; Katie Krause; Joshua M. Bonis; L. G. Pan; B. Qian; Hubert V. Forster

The purpose of this study was to test the hypothesis that an intact cerebellar fastigial nucleus (CFN) is an important determinant of CO(2)-H(+) sensitivity during wakefulness. Bilateral, stainless steel microtubules were implanted into the CFN (N=9) for injection (0.5-10 microl) of the neurotoxin ibotenic acid. Two or more weeks after implantation of the microtubules, eupneic breathing and CO(2)-H(+) sensitivity did not differ significantly (P>0.10) from pre-implantation conditions. Injection of ibotenic acid (50 mM) did not significantly alter eupneic Pa(CO2) (P>0.10). The coefficient of variation of eupneic Pa(CO2) was 4.0+/-0.6 and 3.7+/-0.4% over the 2 weeks before and after the lesion, respectively. CO(2)-H(+) sensitivity expressed as inspired ventilation/Pa(CO2) decreased from 2.15+/-0.17 pre-lesion to 1.58+/-0.26 l/(min mmHg) 3-6 days post-lesion (P<0.02, -27%). There was no significant (P>0.10) recovery of sensitivity between 7 and 10 days post-lesion. The lesion also increased (P<0.05) the day-to-day variability of this index by nearly 100%. When CO(2) sensitivity was expressed as elevated inspired CO(2)/room air V (I), values at 7%, but not 3 and 5% inspired CO(2), were reduced and more variable (P<0.05) after the ibotenic acid injections. We conclude that during wakefulness, the CFN contributes relatively more to overall ventilatory drive at high relative to low levels of hypercapnia.


Journal of Applied Physiology | 2009

Focal acidosis in the pre-Bötzinger complex area of awake goats induces a mild tachypnea

Katie Krause; Hubert V. Forster; S. Davis; Tom Kiner; Joshua M. Bonis; L. G. Pan; B. Qian

There are widespread chemosensitive areas in the brain with varying effects on breathing. In the awake goat, microdialyzing (MD) 50% CO(2) at multiple sites within the medullary raphe increases pulmonary ventilation (Vi), blood pressure, heart rate, and metabolic rate (Vo(2)) (11), while MD in the rostral and caudal cerebellar fastigial nucleus has a stimulating and depressant effect, respectively, on these variables (17). In the anesthetized cat, the pre-Bötzinger complex (preBötzC), a hypothesized respiratory rhythm generator, increases phrenic nerve activity after an acetazolamide-induced acidosis (31, 32). To gain insight into the effects of focal acidosis (FA) within the preBötzC during physiological conditions, we tested the hypothesis that FA in the preBötzC during wakefulness would stimulate breathing, by increasing respiratory frequency (f). Microtubules were bilaterally implanted into the preBötzC of 10 goats. Unilateral MD of mock cerebral spinal fluid equilibrated with 6.4% CO(2) did not affect Vi, tidal volume (Vt), or f. Unilateral MD of 25 and 50% CO(2) significantly increased Vi and f by 10% (P < 0.05, n = 10, 17 trials), but Vt was unaffected. Bilateral MD of 6.4, 25, or 50% CO(2) did not significantly affect Vi, Vt, or f (P > 0.05, n = 6, 6 trials). MD of 80% CO(2) caused a 180% increase in f and severe disruptions in airflow (n = 2). MD of any level of CO(2) did not result in any significant changes in mean arterial blood pressure, heart rate, or Vo(2). Thus the data suggest that the preBötzC area is chemosensitive, but the responses to FA at this site are unique compared with other chemosensitive sites.


Journal of Applied Physiology | 2009

μ-Opioid receptor agonist injections into the presumed pre-Bötzinger complex and the surrounding region of awake goats do not alter eupneic breathing

Katie Krause; Suzanne Neumueller; B. D. Marshall; Tom Kiner; Joshua M. Bonis; L. G. Pan; B. Qian; Hubert V. Forster

Opioids are clinically important in the alleviation of pain. An undesirable side effect of opioids is depression of breathing. Data from isolated preparations suggest this effect is due to attenuation of discharge activity of neurons in the pre-Bötzinger complex (preBötzC), a medullary area with respiratory rhythmogenic properties. The purpose of this study was to examine how [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), a mu-opioid receptor agonist, affected breathing after injection into the presumed preBötzC of the adult awake goat. We hypothesized that DAMGO would cause breathing to decrease and become irregular when injected into the presumed preBötzC and the surrounding region of the conscious animal. We further hypothesized that ventilatory sensitivity to CO(2) and hypoxia would be blunted after the injection of DAMGO. Microtubules were bilaterally implanted into the presumed preBötzC of 10 adult female goats. After recovery from the surgery, DAMGO (0.5-10 mul, 1 nM-10 muM) was injected into the presumed preBötzC during the awake state. DAMGO had no effect on pulmonary ventilation [inspiratory minute ventilation (Vi)], respiratory rhythm and pattern, the activation pattern of inspiratory and expiratory muscles, or arterial blood gases during eupneic breathing conditions (P > 0.10). However, DAMGO attenuated (P < 0.05) the evoked increase in breathing frequency when inspired CO(2) was increased, and DAMGO attenuated the Vi response to reduction of inspired O(2) to 10.8% (P < 0.05). We conclude that our data do not provide support for the concept that in awake mammals opioid depression of breathing is due to a directed action of opioids on preBötzC neurons.


Respiratory Physiology & Neurobiology | 2013

Contributions of the Kölliker-Fuse nucleus to coordination of breathing and swallowing

Joshua M. Bonis; Suzanne Neumueller; Katie Krause; L. G. Pan; Matthew R. Hodges; Hubert V. Forster

Herein we compare the effects of perturbations in the Kölliker-Fuse nucleus (KFN) and the lateral (LPBN) and medial (MPBN) parabrachial nuclei on the coordination of breathing and swallowing. Cannula was chronically implanted in goats through which ibotenic acid (IA) was injected while awake. Swallows in late expiration (E) always reset while swallows in early inspiration (I) never reset the respiratory rhythm. Before cannula implantation, all other E and I swallows did not reset the respiratory rhythm, and had small effects on E and I duration and tidal volume (VT). However, after cannula implantation in the MPBN and KFN, E and I swallows reset the respiratory rhythm and increased the effects on I and E duration and VT. Subsequent injection of IA into the KFN eliminated the respiratory phase resetting of swallows but exacerbated the effects on I and E duration and VT. We conclude that the KFN and to a lesser extent the MPBN contribute to coordination of breathing and swallowing.


Journal of Applied Physiology | 2010

A role for the Kölliker-Fuse nucleus in cholinergic modulation of breathing at night during wakefulness and NREM sleep

Joshua M. Bonis; Suzanne Neumueller; Katie Krause; Tom Kiner; Al Smith; B. D. Marshall; B. Qian; L. G. Pan; Hubert V. Forster

For many years, acetylcholine has been known to contribute to the control of breathing and sleep. To probe further the contributions of cholinergic rostral pontine systems in control of breathing, we designed this study to test the hypothesis that microdialysis (MD) of the muscarinic receptor antagonist atropine into the pontine respiratory group (PRG) would decrease breathing more in animals while awake than while in NREM sleep. In 16 goats, cannulas were bilaterally implanted into rostral pontine tegmental nuclei (n = 3), the lateral (n = 3) or medial (n = 4) parabrachial nuclei, or the Kölliker-Fuse nucleus (KFN; n = 6). After >2 wk of recovery from surgery, the goats were studied during a 45-min period of MD with mock cerebrospinal fluid (mCSF), followed by at least 30 min of recovery and a second 45-min period of MD with atropine. Unilateral and bilateral MD studies were completed during the day and at night. MD of atropine into the KFN at night decreased pulmonary ventilation and breathing frequency and increased inspiratory and expiratory time by 12-14% during both wakefulness and NREM sleep. However, during daytime studies, MD of atropine into the KFN had no effect on these variables. Unilateral and bilateral nighttime MD of atropine into the KFN increased levels of NREM sleep by 63 and 365%, respectively. MD during the day or at night into the other three pontine sites had minimal effects on any variable studied. Finally, compared with MD of mCSF, bilateral MD of atropine decreased levels of acetylcholine and choline in the effluent dialysis fluid. Our data support the concept that the KFN is a significant contributor to cholinergically modulated control of breathing and sleep.


Respiratory Physiology & Neurobiology | 2011

Anatomic changes in multiple brainstem nuclei after incremental, near-complete neurotoxic destruction of the pre-Bötzinger Complex in adult goats.

Suzanne Neumueller; Matthew R. Hodges; Katie Krause; B. D. Marshall; Joshua M. Bonis; B. Qian; L. G. Pan; Hubert V. Forster

Abrupt, bilateral destruction of the pre-Bötzinger Complex (preBötC) leads to terminal apnea in unanesthetized goats and rats. In contrast, respiratory rhythm and pattern and arterial blood gases in goats during wakefulness and sleep are normal after incremental (over a month) destruction of > 90% of the preBötC. Here, we tested the hypothesis that the difference in effects between abrupt and incremental destruction of the preBötC are a result of time-dependent plasticity, which manifests as anatomic changes at sites within the respiratory network. Accordingly, we report data from histological analyses comparing the brainstems of control goats, and goats that had undergone bilateral, incremental, ibotenic acid (IA)-induced preBötC lesioning. A major focus was on the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pontine respiratory group (PRG), which are sites thought to contribute to respiratory rhythmogenesis. We also studied the facial (FN), rostral nucleus ambiguus (NA), medullary raphé (MRN), hypoglossal (HN), and the dorsal motor vagal (DMV) nuclei. Neuronal counts, count region area (mm²), and neuronal densities were calculated using computer-assisted analyses and/or manual microscopy to compare control and preBötC-lesioned animals. We found that within the ventral and lateral medulla 2mm rostral to the caudal pole of the FN (presumed pFRG/RTN), there were 25% and 65% more (P < 0.001) neurons, respectively, in preBötC-lesioned compared to control goats. Lesioned goats also showed 14% and 13% more (P < 0.001) neurons in the HN and medial parabrachialis nucleus, but 46%, 28%, 7%, and 17% fewer (P < 0.001) neurons in the FN, NA, DMV, and Kölliker-Fuse nuclei, respectively. In the remaining sites analyzed, there were no differences between groups. We conclude that anatomic changes at multiple sites within the respiratory network may contribute to the time-dependent plasticity in breathing following incremental and near-complete destruction of the preBötC.


Journal of Applied Physiology | 2010

Differences between three inbred rat strains in number of K+ channel-immunoreactive neurons in the medullary raphé nucleus

D. Riley; Melinda R. Dwinell; B. Qian; Katie Krause; Joshua M. Bonis; Suzanne Neumueller; B. D. Marshall; Matthew R. Hodges; H. V. Forster

Ventilatory sensitivity to hypercapnia is greater in Dahl salt-sensitive (SS) rats than in Fawn Hooded hypertensive (FHH) and Brown Norway (BN) inbred rats. Since pH-sensitive potassium ion (K(+)) channels are postulated to contribute to the sensing and signaling of changes in CO(2)-H(+) in chemosensitive neurons, we tested the hypothesis that there are more pH-sensitive K(+) channel-immunoreactive (ir) neurons within the medullary raphé nuclei of the highly chemosensitive SS rats than in the other two strains. Medullary tissues from male and female BN, FHH, and SS rats were stained with cresyl violet or with antibodies targeting TASK-1, K(v)1.4, and Kir2.3 channels. K(+) channel-ir neurons were quantified and compared with the total neurons in the region. The total number of neurons in the medullary raphé 1) was greater in male FHH than the other male rats, 2) did not differ among the female rats, and 3) did not differ between sexes. The average number of K(+) channel-ir neurons per section was 30-60 neurons higher in the male SS than in the other rat strains. In contrast, for the females, the number of K(+) channel-ir neurons was greatest in the BN. We also found significant differences in the number of K(+) channel-ir neurons between sexes in SS (males > females) and BN (females > males) rats, but not the FHH strain. Our findings support the hypothesis for males but not for females, suggesting that both genetic background and sex are determinants of K(+) channel immunoreactivity of medullary raphé neurons, and that the expression of pH-sensitive K(+) channels in the medullary raphé does not correlate with the ventilatory sensitivity to hypercapnia.

Collaboration


Dive into the Katie Krause's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hubert V. Forster

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Bonis

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

B. Qian

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Suzanne Neumueller

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

S. Davis

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Tom Kiner

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

B. D. Marshall

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Matthew R. Hodges

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

H. V. Forster

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge