Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugh H. Kieffer is active.

Publication


Featured researches published by Hugh H. Kieffer.


Journal of Geophysical Research | 2001

Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results

Philip R. Christensen; Joshua L. Bandfield; Victoria E. Hamilton; Steven W. Ruff; Hugh H. Kieffer; Timothy N. Titus; M. C. Malin; Richard V. Morris; Melissa D. Lane; R. L. Clark; Bruce M. Jakosky; Michael T. Mellon; John C. Pearl; Barney J. Conrath; Michael D. Smith; R. T. Clancy; Ruslan O. Kuzmin; Ted L. Roush; Greg L. Mehall; Noel Gorelick; K. Bender; K. Murray; S. Dason; E. Greene; Steven H. Silverman; M.I. Greenfield

The Thermal Emission Spectrometer (TES) investigation on Mars Global Surveyor (MGS) is aimed at determining (1) the composition of surface minerals, rocks, and ices; (2) the temperature and dynamics of the atmosphere; (3) the properties of the atmospheric aerosols and clouds; (4) the nature of the polar regions; and (5) the thermophysical properties of the surface materials. These objectives are met using an infrared (5.8- to 50-μm) interferometric spectrometer, along with broadband thermal (5.1- to 150-μm) and visible/near-IR (0.3- to 2.9-μm) radiometers. The MGS TES instrument weighs 14.47 kg, consumes 10.6 W when operating, and is 23.6×35.5×40.0 cm in size. The TES data are calibrated to a 1-σ precision of 2.5−6×10−8 W cm−2 sr−1/cm−1, 1.6×10−6 W cm−2 sr−1, and ∼0.5 K in the spectrometer, visible/near-IR bolometer, and IR bolometer, respectively. These instrument subsections are calibrated to an absolute accuracy of ∼4×10−8 W cm−2 sr−1/cm−1 (0.5 K at 280 K), 1–2%, and ∼1–2 K, respectively. Global mapping of surface mineralogy at a spatial resolution of 3 km has shown the following: (1) The mineralogic composition of dark regions varies from basaltic, primarily plagioclase feldspar and clinopyroxene, in the ancient, southern highlands to andesitic, dominated by plagioclase feldspar and volcanic glass, in the younger northern plains. (2) Aqueous mineralization has produced gray, crystalline hematite in limited regions under ambient or hydrothermal conditions; these deposits are interpreted to be in-place sedimentary rock formations and indicate that liquid water was stable near the surface for a long period of time. (3) There is no evidence for large-scale (tens of kilometers) occurrences of moderate-grained (>50-μm) carbonates exposed at the surface at a detection limit of ∼10%. (4) Unweathered volcanic minerals dominate the spectral properties of dark regions, and weathering products, such as clays, have not been observed anywhere above a detection limit of ∼10%; this lack of evidence for chemical weathering indicates a geologic history dominated by a cold, dry climate in which mechanical, rather than chemical, weathering was the significant form of erosion and sediment production. (5) There is no conclusive evidence for sulfate minerals at a detection limit of ∼15%. The polar region has been studied with the following major conclusions: (1) Condensed CO2 has three distinct end-members, from fine-grained crystals to slab ice. (2) The growth and retreat of the polar caps observed by MGS is virtually the same as observed by Viking 12 Martian years ago. (3) Unique regions have been identified that appear to differ primarily in the grain size of CO2; one south polar region appears to remain as black slab CO2 ice throughout its sublimation. (4) Regional atmospheric dust is common in localized and regional dust storms around the margin and interior of the southern cap. Analysis of the thermophysical properties of the surface shows that (1) the spatial pattern of albedo has changed since Viking observations, (2) a unique cluster of surface materials with intermediate inertia and albedo occurs that is distinct from the previously identified low-inertia/bright and high-inertia/dark surfaces, and (3) localized patches of high-inertia material have been found in topographic lows and may have been formed by a unique set of aeolian, fluvial, or erosional processes or may be exposed bedrock.


Journal of Geophysical Research | 2000

Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer: Evidence for Near-surface Water

Philip R. Christensen; Joshua L. Bandfield; Roger N. Clark; Kenneth S. Edgett; Victoria E. Hamilton; Todd M. Hoefen; Hugh H. Kieffer; Ruslan O. Kuzmin; Melissa D. Lane; M. C. Malin; Richard V. Morris; John C. Pearl; R. Pearson; Ted L. Roush; Steven W. Ruff; Michael D. Smith

The Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor (MGS) mission has discovered a remarkable accumulation of crystalline hematite (a-Fe2O3) that covers an area with very sharp boundaries approximately 350 by 350 -750 km in size centered near 28S latitude between 08 and 58W longitude (Sinus Meridiani). Crystalline hematite is uniquely identified by the presence of fundamental vibrational absorption features centered near 300, 450, and .525 cm21 and by the absence of silicate fundamentals in the 1000 cm 21 region. Spectral features resulting from atmospheric CO 2, dust, and water ice were removed using a radiative transfer model. The spectral properties unique to Sinus Meridiani were emphasized by removing the average spectrum of the surrounding region. The depth and shape of the hematite fundamental bands show that the hematite is crystalline and relatively coarse grained (.5-10 mm). Diameters up to and greater than hundreds of micrometers are permitted within the instrumental noise and natural variability of hematite spectra. Hematite particles ,5-10 mm in diameter (as either unpacked or hard-packed powders) fail to match the TES spectra. The spectrally derived areal abundance of hematite varies with particle size from ;10% (.30 mm diameter) to 40 - 60% (10 mm diameter). The hematite in Sinus Meridiani is thus distinct from the fine-grained (diameter ,5-10 mm), red, crystalline hematite considered, on the basis of visible, near-IR data, to be a minor spectral component in Martian bright regions like Olympus-Amazonis. Sinus Meridiani hematite is closely associated with a smooth, layered, friable surface that is interpreted to be sedimentary in origin. This material may be the uppermost surface in the region, indicating that it might be a late stage sedimentary unit or a layered portion of the heavily cratered plains units. We consider five possible mechanisms for the formation of coarse- grained, crystalline hematite. These processes fall into two classes depending on whether they require a significant amount of near-surface water: the first is chemical precipitation that includes origin by (1) precipitation from standing, oxygenated, Fe-rich water (oxide iron formations), (2) precipitation from Fe-rich hydrothermal fluids, (3) low-temperature dissolution and precipitation through mobile ground water leaching, and (4) formation of surface coatings, and the second is thermal oxidation of magnetite-rich lavas. Weathering and alteration processes, which produce nanophase and red hematite, are not consistent with the coarse, crystalline hematite observed in Sinus Meridiani. We prefer chemical precipitation models and favor precipitation from Fe-rich water on the basis of the probable association with sedimentary materials, large geographic size, distance from a regional heat source, and lack of evidence for extensive groundwater processes elsewhere on Mars. The TES results thus provide mineralogic evidence for probable large-scale water interactions. The Sinus Meridiani region may be an ideal candidate for future landed missions searching for biotic and prebiotic environments, and the physical characteristics of this site satisfy all of the engineering requirements for the missions currently planned.


Journal of Geophysical Research | 1992

Thermal emission spectrometer experiment: Mars Observer mission

Philip R. Christensen; Don L. Anderson; S. C. Chase; Roger N. Clark; Hugh H. Kieffer; Michael C. Malin; John C. Pearl; James Carpenter; Nuno Bandiera; F. Gerald Brown; Steven H. Silverman

Thermal infrared spectral measurements will be made of the surface and atmosphere of Mars by the thermal emission spectrometer (TES) on board Mars Observer. By using these observations the composition of the surface rocks, minerals, and condensates will be determined and mapped. In addition, the composition and distribution of atmospheric dust and condensate clouds, together with temperature profiles of the CO2 atmosphere, will be determined. Broadband solar reflectance and thermal emittance measurements will also be made to determine the energy balance in the polar regions and to map the thermophysical properties of the surface. The specific science objectives of this investigation are to determine (1) the composition and distribution of surface materials, (2) the composition, particle size, and spatial and temporal distribution of suspended dust, (3) the location, temperature, height, and water abundance of H2O clouds, (4) the composition, seasonal behavior, total energy balance, and physical properties of the polar caps, and (5) the particle size distribution of rocks and fines on the surface. The instrument consists of three subsections: a Michelson interferometer, a solar reflectance sensor, and a broadband radiance sensor. The spectrometer covers the wavelength range from 6 to 50 μm (∼1600–200 cm−1) with nominal 5 and 10 cm−1 spectral resolution. The solar reflectance band extends from 0.3 to 2.7 μm; the broadband radiance channel extends from 5.5 to 100 μm. There are six 8.3-mrad fields of view for each sensor arranged in a 3 × 2 array, each with 3-km resolution at the nadir. Uncooled deuterated triglycine sulphate (DTGS) pyroelectic detectors provide a signal-to-noise ratio (SNR) of over 500 at 10 μm for daytime spectral observations at a surface temperature of 270 K. The SNR of the albedo and thermal bolometers will be approximately 2000 at the peak signal levels expected. The instrument is 23.6 × 35.5 × 40.0 cm, with a mass of 14.4 kg and an average power consumption of 14.5 W. The approach will be to measure the spectral properties of thermal energy emitted from the surface and atmosphere. Emission phase angle studies and day-night observations will be used to separate the spectral character of the surface and atmosphere. The distinctive thermal infrared spectral features present in minerals, rocks, and condensates will be used to determine the mineralogic and petrologic character of the surface and to identify and study aerosols and volatiles in the atmosphere.


Science | 1976

Martian North Pole Summer Temperatures: Dirty Water Ice

Hugh H. Kieffer; S. C. Chase; Terry Z. Martin; E. D. Miner; Frank D. Palluconi

Broadband thermal and reflectance observations of the martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.


Icarus | 1981

Thermal inertia mapping of Mars from 60°S to 60°N

Frank D. Palluconi; Hugh H. Kieffer

Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is 1 to 15 × 10−3 cal cm−2 sec−12°K−1. The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than 4 × 10−3 cal cm−2 sec−12°K−1 being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.


The Astronomical Journal | 2005

THE SPECTRAL IRRADIANCE OF THE MOON

Hugh H. Kieffer; Thomas C. Stone

Images of the Moon at 32 wavelengths from 350 to 2450 nm have been obtained from a dedicated observatory during the bright half of each month over a period of several years. The ultimate goal is to develop a spectral radiance model of the Moon with an angular resolution and radiometric accuracy appropriate for calibration of Earth-orbiting spacecraft. An empirical model of irradiance has been developed that treats phase and libration explicitly, with absolute scale founded on the spectra of the star Vega and returned Apollo samples. A selected set of 190 standard stars are observed regularly to provide nightly extinction correction and long-term calibration of the observations. The extinction model is wavelength-coupled and based on the absorption coefficients of a number of gases and aerosols. The empirical irradiance model has the same form at each wavelength, with 18 coefficients, eight of which are constant across wavelength, for a total of 328 coefficients. Over 1000 lunar observations are fitted at each wavelength; the average residual is less than 1%. The irradiance model is actively being used in lunar calibration of several spacecraft instruments and can track sensor response changes at the 0.1% level.


Nature | 2005

Evidence for magmatic evolution and diversity on Mars from infrared observations

P. R. Christensen; Harry Y. McSween; Joshua L. Bandfield; Steven W. Ruff; A. D. Rogers; Victoria E. Hamilton; Noel Gorelick; Michael Bruce Wyatt; Bruce M. Jakosky; Hugh H. Kieffer; M. C. Malin; Jeffrey Edward Moersch

Compositional mapping of Mars at the 100-metre scale with the Mars Odyssey Thermal Emission Imaging System (THEMIS) has revealed a wide diversity of igneous materials. Volcanic evolution produced compositions from low-silica basalts to high-silica dacite in the Syrtis Major caldera. The existence of dacite demonstrates that highly evolved lavas have been produced, at least locally, by magma evolution through fractional crystallization. Olivine basalts are observed on crater floors and in layers exposed in canyon walls up to 4.5 km beneath the surface. This vertical distribution suggests that olivine-rich lavas were emplaced at various times throughout the formation of the upper crust, with their growing inventory suggesting that such ultramafic (picritic) basalts may be relatively common. Quartz-bearing granitoid rocks have also been discovered, demonstrating that extreme differentiation has occurred. These observations show that the martian crust, while dominated by basalt, contains a diversity of igneous materials whose range in composition from picritic basalts to granitoids rivals that found on the Earth.


Science | 1996

Near-Infrared Spectroscopy and Spectral Mapping of Jupiter and the Galilean Satellites: Results from Galileo's Initial Orbit

Robert W. Carlson; William D. Smythe; Kevin H. Baines; E. Barbinis; Kris J. Becker; R. Burns; Simon B. Calcutt; Wendy M. Calvin; Roger N. Clark; G. E. Danielson; Ashley Gerard Davies; P. Drossart; Th. Encrenaz; Fraser P. Fanale; James Charles Granahan; Gary B. Hansen; P. Herrera; Charles Arthur Hibbitts; J. Hui; Patrick G. J. Irwin; Torrence V. Johnson; L. W. Kamp; Hugh H. Kieffer; F. Leader; E. Lellouch; Rosaly Lopes-Gautier; Dennis L. Matson; Thomas B. McCord; R. Mehlman; A. Ocampo

The Near Infrared Mapping Spectrometer performed spectral studies of Jupiter and the Galilean satellites during the June 1996 perijove pass of the Galileo spacecraft. Spectra for a 5-micrometer hot spot on Jupiter are consistent with the absence of a significant water cloud above 8 bars and with a depletion of water compared to that predicted for solar composition, corroborating results from the Galileo probe. Great Red Spot (GRS) spectral images show that parts of this feature extend upward to 240 millibars, although considerable altitude-dependent structure is found within it. A ring of dense clouds surrounds the GRS and is lower than it by 3 to 7 kilometers. Spectra of Callisto and Ganymede reveal a feature at 4.25 micrometers, attributed to the presence of hydrated minerals or possibly carbon dioxide on their surfaces. Spectra of Europas high latitudes imply that fine-grained water frost overlies larger grains. Several active volcanic regions were found on Io, with temperatures of 420 to 620 kelvin and projected areas of 5 to 70 square kilometers.


The Astronomical Journal | 1971

Mariner 1969 Infrared Radiometer Results: Temperatures and Thermal Properties of the Martian Surface

G. Neugebauer; G. Münch; Hugh H. Kieffer; S. C. Chase; E. Miner

The reduced data of the Mariner 6 and 7 Infrared Radiometer Experiments are presented, along with a discussion of the reduction and calibration procedures. Evidence is presented showing that the surface of Mars is strongly nonhomogeneous in its thermal properties, on scales ranging from those of the classical light and dark areas to the limit of resolution of the radiometers. On the sunlit side, the mean thermal inertia, for admissible bolometric albedos, is 0.006 (cal cm^(-2) sec^(-1/2) °K^(-1)). The dark areas Syrtis Major and Mare Tyrrhenum, observed at night, require thermal inertias as high as 0.010. The temperatures measured over the circular basin Hellas require a bolometric albedo of 0.40 and also a high thermal inertia. The temperature measured over the south polar cap, 148° K, provides evidence that the major constituent of the frost deposit is CO_2.


Science | 1991

Galileo infrared imaging spectroscopy measurements at Venus

Robert W. Carlson; Kevin H. Baines; Th. Encrenaz; F. W. Taylor; P. Drossart; L. W. Kamp; James B. Pollack; E. Lellouch; A.D. Collard; Simon B. Calcutt; David Harry Grinspoon; Paul R. Weissman; William D. Smythe; A. Ocampo; G. E. Danielson; Fraser P. Fanale; Torrence V. Johnson; Hugh H. Kieffer; Dennis L. Matson; Thomas B. McCord; L. A. Soderblom

During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.

Collaboration


Dive into the Hugh H. Kieffer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. Jakosky

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Laurence A. Soderblom

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

William D. Smythe

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank D. Palluconi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Carlson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas C. Stone

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge