Hugh M. Fentress
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugh M. Fentress.
Genes, Brain and Behavior | 2008
Maureen K. Hahn; Jennifer Urbano Blackford; Kirsten Haman; Michelle S. Mazei-Robison; Brett A. English; Harish C. Prasad; Angela Steele; L. Hazelwood; Hugh M. Fentress; R. Myers; Randy D. Blakely; Elaine Sanders-Bush; Richard C. Shelton
Unipolar major depressive disorder (MDD) is a prevalent, disabling condition with multiple genetic and environmental factors impacting disease risk. The diagnosis of MDD relies on a cumulative measure derived from multiple trait dimensions and alone is limited in elucidating MDD genetic determinants. We and others have proposed that MDD may be better dissected using paradigms that assess how specific genes associate with component features of MDD. This within‐disease design requires both a well‐phenotyped cohort and a robust statistical approach that retains power with multiple tests of genetic association. In the present study, common polymorphic variants of genes related to central monoaminergic and cholinergic pathways that previous studies align with functional change in vitro or depression associations in vivo were genotyped in 110 individuals with unipolar MDD. Subphenotypic characteristics were examined using responses to individual items assessed with the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders (DSM IV), the 17‐item Hamilton Rating Scale for Depression (HAM‐D) and the NEO Five Factor Inventory. Multivariate Permutation Testing (MPT) was used to infer genotype–phenotype relationships underlying dimensional findings within clinical categories. MPT analyses show significant associations of the norepinephrine transporter (NET, SLC6A2) ‐182 T/C (rs2242446) with recurrent depression [odds ratio, OR = 4.15 (1.91–9.02)], NET ‐3081 A/T (rs28386840) with increase in appetite [OR = 3.58 (1.53–8.39)] and the presynaptic choline transporter (CHT, SLC5A7) Ile89Val (rs1013940) with HAM‐D‐17 total score {i.e. overall depression severity [OR = 2.74 (1.05–7.18)]}. These relationships illustrate an approach to the elucidation of gene influences on trait components of MDD and with replication, may help identify MDD subpopulations that can benefit from more targeted pharmacotherapy.
Pharmacogenomics Journal | 2005
Hugh M. Fentress; E Grinde; J E Mazurkiewicz; J R Backstrom; K Herrick-Davis; Elaine Sanders-Bush
The human serotonin 2C (5-HT2C) receptor undergoes extensive RNA editing, generating multiple isoforms; the most prominent isoform in the human brain is the extensively edited VSV isoform. In addition, a naturally occurring single nucleotide polymorphism (SNP) is found in the coding region of the 5-HT2C receptor gene, which converts cysteine to serine at the 23rd amino acid (C23S). To elucidate the functional consequences, pharmacological properties were evaluated in cells expressing C23 or S23 in the nonedited, INI, or edited, VSV, isoform. Confocal imaging of HEK293 cells expressing the C23 and S23 variants revealed no apparent difference in cellular localization, which was confirmed in NIH-3T3 fibroblasts by surface biotinylation. Competition binding experiments revealed comparable high-affinity agonist binding for the C23 and S23 receptors and no difference in ligand affinities in either the INI or VSV backbones. The dose-response functions for 5-HT and (±)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI) to elicit phosphoinositide hydrolysis did not differ in either HEK293 or NIH-3T3 fibroblasts expressing the receptor variants. Constitutive activity, evaluated in COS-7 and HEK293 cells, also was not different. Lastly, fluorescence resonance energy transfer demonstrated homodimerization of C23 receptors, which was reproduced in cells expressing the S23 variant. We conclude that the C23S SNP in the 5-HT2C receptor has no functional consequences, even when evaluated in the most common, edited receptor backbone. Therefore, positive associations between this polymorphism and disease states may be a consequence of linkage disequilibrium with another SNP that is involved in the disease.
Biological Psychiatry | 2012
Qiang Wei; Hugh M. Fentress; Mary T. Hoversten; Limei Zhang; Elaine K. Hebda-Bauer; Stanley J. Watson; Audrey F. Seasholtz; Huda Akil
BACKGROUND Genetic factors and early-life adversity are critical in the etiology of mood disorders and substance abuse. Because of their role in the transduction of stress responses, glucocorticoid hormones and their receptors could serve as both genetic factors and mediators of environmental influences. We have shown that constitutive overexpression of the glucocorticoid receptor (GR) in forebrain results in increased emotional reactivity and lability in mice. Here, we asked whether there was a critical period for the emergence of this phenotype. METHODS We generated a mouse line with inducible GR overexpression specifically in forebrain. Anxiety-like behaviors and cocaine-induced sensitization were assessed in adult mice following GR overexpression during different periods in development. The molecular basis of the behavioral phenotype was examined using microarray analyses of dentate gyrus and nucleus accumbens. RESULTS Transient overexpression of GR during early life led to increased anxiety and cocaine sensitization, paralleling the phenotype of lifelong GR overexpression. This increased emotional reactivity was not observed when GR overexpression was induced after weaning. Glucocorticoid receptor overexpression in early life is sufficient to alter gene expression patterns for the rest of the animals life, with dentate gyrus being more responsive than nucleus accumbens. The altered transcripts are implicated in GR and axonal guidance signaling in dentate gyrus and dopamine receptor signaling in nucleus accumbens. CONCLUSIONS Transient overexpression of GR early in life is both necessary and sufficient for inducing transcriptome-wide changes in the brain and producing a lifelong increase in vulnerability to anxiety and drugs of abuse.
Frontiers in Physiology | 2016
Bipradas Roy; Mary E. Curtis; Letimicia Fears; S. N. Nahashon; Hugh M. Fentress
Obesity and osteoporosis are two alarming health disorders prominent among middle and old age populations, and the numbers of those affected by these two disorders are increasing. It is estimated that more than 600 million adults are obese and over 200 million people have osteoporosis worldwide. Interestingly, both of these abnormalities share some common features including a genetic predisposition, and a common origin: bone marrow mesenchymal stromal cells. Obesity is characterized by the expression of leptin, adiponectin, interleukin 6 (IL-6), interleukin 10 (IL-10), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), macrophage colony stimulating factor (M-CSF), growth hormone (GH), parathyroid hormone (PTH), angiotensin II (Ang II), 5-hydroxy-tryptamine (5-HT), Advance glycation end products (AGE), and myostatin, which exert their effects by modulating the signaling pathways within bone and muscle. Chemical messengers (e.g., TNF-α, IL-6, AGE, leptins) that are upregulated or downregulated as a result of obesity have been shown to act as negative regulators of osteoblasts, osteocytes and muscles, as well as positive regulators of osteoclasts. These additive effects of obesity ultimately increase the risk for osteoporosis and muscle atrophy. The aim of this review is to identify the potential cellular mechanisms through which obesity may facilitate osteoporosis, muscle atrophy and bone fractures.
Journal of Nutritional Biochemistry | 2000
James J. L. Wang; Zhaolin Hua; Hugh M. Fentress; Charles K. Singleton
Thiamine deficiency results in selective neuronal damage. A number of mechanisms have been proposed to account for brain damage associated with thiamine deficiency and to account for the focal nature of the loss of neurons. One proposed mechanism is programmed cell death. We found efficient induction of apoptosis in human neuroblastoma cells when the cells were deprived of thiamine. Although extensive mitochondrial damage was seen, the release of cytochrome c was not the triggering mechanism for thiamine deficiency-induced apoptosis. Instead, the activity of the cJun amino terminal kinase Jnk1 was lost, and this loss correlated temporally with induction of apoptosis. The loss was specific for Jnk1; Jnk2/3 activity remained unchanged. Loss of Jnk1 activity was not found in lymphoblasts, a cell type that did not undergo apoptosis when deprived of thiamine. These findings suggest that thiamine deficiency results in a cellular stress that brings about the loss of Jnk1 activity and the loss of its function of protecting cells from programmed cell death. We postulate that focal sensitivity to thiamine deficiency results, in part, from specific neuronal cell types being susceptible to the inactivation of Jnk1 in response to depletion of cellular thiamine.
Disease Models & Mechanisms | 2013
Jana Shirey-Rice; Rebecca Klar; Hugh M. Fentress; Sarah N. Redmon; Tiffany R. Sabb; Jessica J. Krueger; Nathan M. Wallace; Martin Appalsamy; Suzanna Lonce; André Diedrich; Maureen K. Hahn
SUMMARY Postural orthostatic tachycardia syndrome (POTS) is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline) transporter (NET; encoded by SLC6A2) in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET+/P) exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET+/+) mice, whereas transport activity in mice carrying two A457P alleles (NETP/P) was nearly abolished. NET+/P and NETP/P mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG), and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET+/P mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET+/P mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.
Genes, Brain and Behavior | 2013
Hugh M. Fentress; Rebecca Klar; Jessica J. Krueger; Tiffany R. Sabb; Sarah N. Redmon; Nathan M. Wallace; Jana Shirey-Rice; Maureen K. Hahn
The norepinephrine (NE) transporter (NET) regulates synaptic NE availability for noradrenergic signaling in the brain and sympathetic nervous system. Although genetic variation leading to a loss of NET expression has been implicated in psychiatric and cardiovascular disorders, complete NET deficiency has not been found in people, limiting the utility of NET knockout mice as a model for genetically driven NET dysfunction. Here, we investigate NET expression in NET heterozygous knockout male mice (NET+/−), demonstrating that they display an approximately 50% reduction in NET protein levels. Surprisingly, these mice display no significant deficit in NET activity assessed in hippocampal and cortical synaptosomes. We found that this compensation in NET activity was due to enhanced activity of surface‐resident transporters, as opposed to surface recruitment of NET protein or compensation through other transport mechanisms, including serotonin, dopamine or organic cation transporters. We hypothesize that loss of NET protein in the NET+/− mouse establishes an activated state of existing surface NET proteins. The NET+/− mice exhibit increased anxiety in the open field and light–dark box and display deficits in reversal learning in the Morris water maze. These data suggest that recovery of near basal activity in NET+/− mice appears to be insufficient to limit anxiety responses or support cognitive performance that might involve noradrenergic neurotransmission. The NET+/− mice represent a unique model to study the loss and resultant compensatory changes in NET that may be relevant to behavior and physiology in human NET deficiency disorders.
Neuroscience | 2010
Elaine K. Hebda-Bauer; Amy Pletsch; Hala Darwish; Hugh M. Fentress; Tracy A. Simmons; Qiang Wei; Stanley J. Watson; Huda Akil
Reactivity to environmental stressors influences vulnerability to neurological and psychiatric illnesses, but little is known about molecular mechanisms that control this reactivity. Since mice with forebrain-specific glucocorticoid receptor overexpression (GRov mice) display anxiety-like behaviors in novel environments and have difficulty adjusting to change in memory tasks, we hypothesized that these may be facets of a broader phenotype of altered reactivity to environmental demands. Male GRov and wild-type mice were tested in a multiple-trial object interaction test comprising environmental and object habituation and spatial and object novelty trials. Half the mice received restraint stress before testing. GRov mice exhibited more locomotor activity and, without stress, more object interaction than wild-type mice. Following acute stress, GRov mice no longer showed increased object exploration. While stress dampened responses to object novelty in both groups, GRov mice were particularly impaired in discrimination of spatial novelty post-stress. These data demonstrate that GRov leads to increased environmental reactivity, responsiveness to salience, and vulnerability to stress-induced cognitive deficits. They implicate forebrain glucocorticoid receptor (GR) in fine-tuning interactions with the environment and the interplay of emotional salience, coping abilities, and cognitive function.
The FASEB Journal | 2016
Letimicia Fears; Mary E. Curtis; Terrance Johnson; Hugh M. Fentress
The FASEB Journal | 2016
Mary E. Curtis; Letimicia Fears; Michael T. Ivy; Hugh M. Fentress