Maureen K. Hahn
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maureen K. Hahn.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Chun-Hyung Kim; Maureen K. Hahn; Yoo-Sook Joung; Susan L. Anderson; Angela Steele; Michelle S. Mazei-Robinson; Ian R. Gizer; Martin H. Teicher; Bruce M. Cohen; David Robertson; Irwin D. Waldman; Randy D. Blakely; Kwang-Soo Kim
The norepinephrine transporter critically regulates both neurotransmission and homeostasis of norepinephrine in the nervous system. In this study, we report a previously uncharacterized and common A/T polymorphism at −3081 upstream of the transcription initiation site of the human norepinephrine transporter gene [solute carrier family 6, member 2 (SLC6A2)]. Using both homologous and heterologous promoter-reporter constructs, we found that the −3081(T) allele significantly decreases promoter function compared with the A allele. Interestingly, this T allele creates a new palindromic E2-box motif that interacts with Slug and Scratch, neural-expressed transcriptional repressors binding to the E2-box motif. We also found that both Slug and Scratch repress the SLC6A2 promoter activity only when it contains the T allele. Finally, we observed a significant association between the −3081(A/T) polymorphism and attention-deficit hyperactivity disorder (ADHD), suggesting that anomalous transcription factor-based repression of SLC6A2 may increase risk for the development of attention-deficit hyperactivity disorder and other neuropsychiatric diseases.
Pharmacogenomics Journal | 2002
Maureen K. Hahn; Randy D. Blakely
The norepinephrine, dopamine and serotonin transporters (NET, DAT and SERT, respectively), limit cellular signaling by recapturing released neurotransmitter, and serve as targets for antidepressants and drugs of abuse, emphasizing the integral role these molecules play in neurotransmission and pathology. This has compelled researchers to search for polymorphisms in monoamine (MA) transporter genes. Studies support linkage and association of MA transporter genetic variation in psychiatric and other complex disorders. Understanding the contribution of MA transporter polymorphisms to human behavior, disease susceptibility and response to pharmacotherapies will involve further progress in linkage and association that will be aided by both definition of highly selective phenotypes and utilization of a large number of polymorphic markers. The relationship of polymorphisms to alterations in transport capacity, likely a complex interaction, involving genetic background, disease state, and medication, will elucidate the means by which MA transporter genetic variability contributes to our individuality.
The Journal of Neuroscience | 2003
Maureen K. Hahn; David Robertson; Randy D. Blakely
The norepinephrine transporter (NET) mediates reuptake of norepinephrine released from neurons, and, as such, it is an important regulator of noradrenergic neurotransmission. Recently, our laboratory reported a polymorphism in the human NET (hNET) gene A457P in an individual with the autonomic disorder orthostatic intolerance (OI). The presence of the hNET-A457P allele tracked with elevated heart rates and plasma NE levels in family members. hNET-A457P lacks >98% transport activity in several heterologous expression systems. In the present work, Western blot and biotinylation analyses performed in transiently transfected COS-7 cells revealed impairment in processing of hNET-A457P to the fully glycosylated form and a decrease in surface expression to ∼30% of hNET-wild type (hNET-wt). Because the hNET-A457P mutation is carried on a single allele in OI subjects, we examined the influence of cotransfection of hNET-wt and hNET-A457P and found that hNET-A457P exerts a dominant-negative effect on hNET-wt uptake activity. Experiments to determine oligomerization as a potential mechanism of the dominant-negative effect demonstrated that hNET-A457P coimmunoprecipitates with, and diminishes surface expression of, hNET-wt. These results reveal that hNET-A457P causes a conformational disruption that interferes with transporter biosynthetic progression and trafficking of both the mutant transporter and hNET-wt. These results elucidate a molecular mechanism for the disrupted NE homeostasis and cardiovascular function evident in OI patients with the hNET-A457P mutation.
Journal of Neurochemistry | 2005
Richard Nass; Maureen K. Hahn; Tammy Jessen; Paul W. McDonald; Lucia Carvelli; Randy D. Blakely
The presynaptic dopamine (DA) transporter (DAT) is a major determinant of synaptic DA inactivation, an important target for psychostimulants including cocaine and amphetamine, and a mediator of DA neuron vulnerability to the neurotoxins 6‐hydroxydopamine (6‐OHDA) and 1‐methyl‐4‐phenylpyridinium ion. To exploit genetic approaches for the study of DATs and neural degeneration, we exploited the visibility of green fluorescent protein (GFP)‐tagged DA neurons in transgenic nematodes to implement a forward genetic screen for suppressors of 6‐OHDA sensitivity. In our initial effort, we identified three novel dat‐1 alleles conferring 6‐OHDA resistance. Two of the dat‐1 alleles derive from point mutations in conserved glycine residues (G55, G90) in contiguous DAT‐1 transmembrane domains (TM1 and TM2, respectively), whereas the third allele results in altered translation of the transporters COOH terminus. Our studies reveal biosynthetic, trafficking and functional defects in the DAT‐1 mutants, exhibited both in vitro and in vivo. These studies validate a forward genetic approach to the isolation of DA neuron‐specific toxin suppressors and point to critical contributions of the mutated residues, as well as elements of the DAT‐1 COOH terminus, to functional expression of catecholamine transporters in neurons.
Genes, Brain and Behavior | 2008
Maureen K. Hahn; Jennifer Urbano Blackford; Kirsten Haman; Michelle S. Mazei-Robison; Brett A. English; Harish C. Prasad; Angela Steele; L. Hazelwood; Hugh M. Fentress; R. Myers; Randy D. Blakely; Elaine Sanders-Bush; Richard C. Shelton
Unipolar major depressive disorder (MDD) is a prevalent, disabling condition with multiple genetic and environmental factors impacting disease risk. The diagnosis of MDD relies on a cumulative measure derived from multiple trait dimensions and alone is limited in elucidating MDD genetic determinants. We and others have proposed that MDD may be better dissected using paradigms that assess how specific genes associate with component features of MDD. This within‐disease design requires both a well‐phenotyped cohort and a robust statistical approach that retains power with multiple tests of genetic association. In the present study, common polymorphic variants of genes related to central monoaminergic and cholinergic pathways that previous studies align with functional change in vitro or depression associations in vivo were genotyped in 110 individuals with unipolar MDD. Subphenotypic characteristics were examined using responses to individual items assessed with the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders (DSM IV), the 17‐item Hamilton Rating Scale for Depression (HAM‐D) and the NEO Five Factor Inventory. Multivariate Permutation Testing (MPT) was used to infer genotype–phenotype relationships underlying dimensional findings within clinical categories. MPT analyses show significant associations of the norepinephrine transporter (NET, SLC6A2) ‐182 T/C (rs2242446) with recurrent depression [odds ratio, OR = 4.15 (1.91–9.02)], NET ‐3081 A/T (rs28386840) with increase in appetite [OR = 3.58 (1.53–8.39)] and the presynaptic choline transporter (CHT, SLC5A7) Ile89Val (rs1013940) with HAM‐D‐17 total score {i.e. overall depression severity [OR = 2.74 (1.05–7.18)]}. These relationships illustrate an approach to the elucidation of gene influences on trait components of MDD and with replication, may help identify MDD subpopulations that can benefit from more targeted pharmacotherapy.
Journal of Neurodevelopmental Disorders | 2009
Brett A. English; Maureen K. Hahn; Ian R. Gizer; Michelle S. Mazei-Robison; Angela Steele; Daniel Kurnik; Mark A. Stein; Irwin D. Waldman; Randy D. Blakely
The neurotransmitter acetylcholine (ACh) plays a critical role in brain circuits mediating motor control, attention, learning and memory. Cholinergic dysfunction is associated with multiple brain disorders including Alzheimer’s Disease, addiction, schizophrenia and Attention-Deficit Hyperactivity Disorder (ADHD). The presynaptic choline transporter (CHT, SLC5A7) is the major, rate-limiting determinant of ACh production in the brain and periphery and is consequently upregulated during tasks that require sustained attention. Given the contribution of central cholinergic circuits to the control of movement and attention, we hypothesized that functional CHT gene variants might impact risk for ADHD. We performed a case-control study, followed by family-based association tests on a separate cohort, of two purportedly functional CHT polymorphisms (coding variant Ile89Val (rs1013940) and a genomic SNP 3’ of the CHT gene (rs333229), affording both a replication sample and opportunities to reduce potential population stratification biases. Initial genotyping of pediatric ADHD subjects for two purportedly functional CHT alleles revealed a 2–3 fold elevation of the Val89 allele (n = 100; P = 0.02) relative to healthy controls, as well as a significant decrease of the 3’SNP minor allele in Caucasian male subjects (n = 60; P = 0.004). In family based association tests, we found significant overtransmission of the Val89 variant to children with a Combined subtype diagnosis (OR = 3.16; P = 0.01), with an increased Odds Ratio for a haplotype comprising both minor alleles. These studies show evidence of cholinergic deficits in ADHD, particularly for subjects with the Combined subtype, and, if replicated, may encourage further consideration of cholinergic agonist therapy in the disorder.
Molecular Brain Research | 1996
Carrol M. D'Sa; Kei Hirayama; Anthony R. West; Maureen K. Hahn; Zhu Min; Gregory Kapatos
The possibility that 5,6,7,8-tetrahydrobiopterin (BH4) biosynthesis is stimulated in glial cells by treatment with lipopolysaccharide (LPS) and tumor necrosis factor (TNF-alpha) was examined in the astrocyte-derived C6 glioma cell line. Under basal culture conditions BH4 levels were found to be at the limit of detection. Concurrent treatment with 10 micrograms/ml LPS and 50 ng/ml TNF-alpha caused a time-dependent 13-fold increase in the levels of BH4. This treatment paradigm also induced nitric oxide synthase activity, as evidenced by increased levels of nitrite, an oxidized metabolite of NO, in the culture medium. LPS and TNF-alpha treatment led to a 25-fold increase in GTPCH enzyme activity, the first and rate-limiting enzyme in BH4 synthesis, and a corresponding 23-fold increase in GTPCH protein levels. Northern blot analysis showed that increased levels of GTPCH mRNA preceded changes in GTPCH protein, GTPCH enzyme activity and BH4 levels and reached a maximal of 44-fold that was sustained for at least 48 h. These results demonstrate that LPS and TNF-alpha stimulate de-novo BH4 biosynthesis and suggest that C6 cells offer a model system for studying the molecular events that control the induction of GTPCH gene expression and BH4 synthesis in glial cells.
Neurochemistry International | 2014
Raajaram Gowrishankar; Maureen K. Hahn; Randy D. Blakely
The neurotransmitter dopamine (DA) plays a critical role in CNS circuits that provide for attention, executive function, reward responses, motivation and movement. DA is inactivated by the cocaine- and amphetamine-sensitive DA transporter (DAT), a protein that also provides a pathway for non-vesicular DA release. After a brief review of DAT function and psychostimulant actions, we consider the importance DAT in relation to the distinct firing patterns of DA neurons that permit awareness of novelty and reward. Finally, we review recent efforts to gather direct support for DAT-linked disorders, with a specific focus on DAT mutations recently identified in subjects with ADHD.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Marc A. Mergy; Raajaram Gowrishankar; Paul J. Gresch; Stephanie C. Gantz; John T. Williams; Gwynne L. Davis; C. Austin Wheeler; Gregg D. Stanwood; Maureen K. Hahn; Randy D. Blakely
Significance Dopamine (DA) signaling provides important, modulatory control of movement, at tention, and reward. Disorders linked to changes in DA signaling include Parkinson’s disease, attention-deficit hyperactivity disorder, schizophrenia, autism spectrum disorder, and addiction. We identified multiple, functional polymorphisms in the human DA transporter (DAT) gene and showed that one of these variants, which produces the amino acid substitution Val559 (wild-type DATs express Ala559), exhibits normal DA uptake accompanied by a spontaneous outward efflux of the neurotransmitter, reminiscent of the actions of the psychostimulant amphetamine. Here, we identify multiple biochemical, physiological, and behavioral perturbations that arise from DAT Val559 expression in vivo, supporting spontaneous DA efflux as a heretofore-unrecognized mechanism that may underlie multiple DA-linked neurobehavioral disorders. Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Annals of the New York Academy of Sciences | 2002
Emily M. Garland; Maureen K. Hahn; Terry Ketch; Nancy R. Keller; Chun-Hyung Kim; Kwang-Soo Kim; Italo Biaggioni; John R. Shannon; Randy D. Blakely; David Robertson
Abstract: Norepinephrine and epinephrine are critical determinants of minute‐to‐minute regulation of blood pressure. Here we review the characterization of two syndromes associated with a genetic abnormality in the noradrenergic pathway. In 1986, we reported a congenital syndrome of undetectable tissue and circulating levels of norepinephrine and epinephrine, elevated levels of dopamine, and absence of dopamine‐β‐hydroxylase (DBH). These patients appeared with ptosis and severe orthostatic hypotension and lacked sympathetic noradrenergic function. In two persons with DBH deficiency, we identified seven novel polymorphisms. Both patients are compound heterozygotes for a variant that affects expression of DBH protein via impairment of splicing. Patient 1 also has a missense mutation in DBH exon 2, and patient 2 carries missense mutations in exons 1 and 6. Orthostatic intolerance is a common syndrome affecting young women, presenting with orthostatic tachycardia and symptoms of cerebral hypoperfusion on standing. We tested the hypothesis that abnormal norepinephrine transporter (NET) function might contribute to its etiology. In our proband, we found an elevated plasma norepinephrine with standing that was disproportionate to the increase in levels of dihydroxphenylglycol, as well as impaired norepinephrine clearance and tyramine resistance. Studies of NET gene structure revealed a coding mutation converting a conserved alanine residue in transmembrane domain 9 to proline. Analysis of the protein produced by the mutant cDNA demonstrated greater than 98% reduction in activity relative to normal. The finding of genetic mutations responsible for DBH deficiency and orthostatic intolerance leads us to believe that genetic causes of other autonomic disorders will be found, enabling us to design more effective therapeutic interventions.