Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugo Ricketts is active.

Publication


Featured researches published by Hugo Ricketts.


Bulletin of the American Meteorological Society | 2007

The Convective Storm Initiation Project

K. A. Browning; Alan M. Blyth; Peter A. Clark; U. Corsmeier; Cyril J. Morcrette; Judith L. Agnew; Sue P. Ballard; Dave Bamber; Christian Barthlott; Lindsay J. Bennett; Karl M. Beswick; Mark Bitter; K. E. Bozier; Barbara J. Brooks; C. G. Collier; Fay Davies; Bernhard Deny; Mark Dixon; Thomas Feuerle; Richard M. Forbes; Catherine Gaffard; Malcolm D. Gray; R. Hankers; Tim J. Hewison; N. Kalthoff; S. Khodayar; M. Kohler; C. Kottmeier; Stephan Kraut; M. Kunz

The Convective Storm Initiation Project (CSIP) is an international project to understand precisely where, when, and how convective clouds form and develop into showers in the mainly maritime environment of southern England. A major aim of CSIP is to compare the results of the very high resolution Met Office weather forecasting model with detailed observations of the early stages of convective clouds and to use the newly gained understanding to improve the predictions of the model. A large array of ground-based instruments plus two instrumented aircraft, from the U.K. National Centre for Atmospheric Science (NCAS) and the German Institute for Meteorology and Climate Research (IMK), Karlsruhe, were deployed in southern England, over an area centered on the meteorological radars at Chilbolton, during the summers of 2004 and 2005. In addition to a variety ofground-based remote-sensing instruments, numerous rawinsondes were released at one- to two-hourly intervals from six closely spaced sites. The Met Office weather radar network and Meteosat satellite imagery were used to provide context for the observations made by the instruments deployed during CSIP. This article presents an overview of the CSIP field campaign and examples from CSIP of the types of convective initiation phenomena that are typical in the United Kingdom. It shows the way in which certain kinds of observational data are able to reveal these phenomena and gives an explanation of how the analyses of data from the field campaign will be used in the development of an improved very high resolution NWP model for operational use.


Bulletin of the American Meteorological Society | 2015

Meteorology, air quality, and health in London: The ClearfLo project

Sylvia I. Bohnenstengel; Stephen E. Belcher; A. C. Aiken; J. D. Allan; G. Allen; Asan Bacak; Thomas J. Bannan; Janet F. Barlow; David C. S. Beddows; William J. Bloss; Am Booth; Charles Chemel; Omduth Coceal; C. Di Marco; Manvendra K. Dubey; K.H. Faloon; Zoe L. Fleming; Markus Furger; Johanna K. Gietl; R. Graves; David Green; C. S. B. Grimmond; Christos Halios; Jacqueline F. Hamilton; Roy M. Harrison; Mathew R. Heal; Dwayne E. Heard; Carole Helfter; Scott C. Herndon; R.E. Holmes

AbstractAir quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and eleva...


Bulletin of the American Meteorological Society | 2016

The Convective Precipitation Experiment (COPE): Investigating the Origins of Heavy Precipitation in the Southwestern United Kingdom

David Leon; Jeffrey R. French; Sonia Lasher-Trapp; Alan M. Blyth; Steven J. Abel; Susan P. Ballard; Andrew I. Barrett; Lindsay J. Bennett; Keith N. Bower; Barbara J. Brooks; P. R. A. Brown; Cristina Charlton-Perez; Thomas Choularton; Peter A. Clark; C. G. Collier; Jonathan Crosier; Zhiqiang Cui; Seonaid R. A. Dey; David Dufton; Chloe Eagle; M. Flynn; Martin Gallagher; Carol Halliwell; Kirsty E. Hanley; Lee Hawkness-Smith; Y. Huang; Graeme Kelly; Malcolm Kitchen; Alexei Korolev; Humphrey W. Lean

AbstractThe Convective Precipitation Experiment (COPE) was a joint U.K.–U.S. field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly as a result of the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the United States. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve numerical weather prediction (NWP) model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the U.K. BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several d...


Bulletin of the American Meteorological Society | 2017

Coordinated Airborne Studies in the Tropics (CAST)

N. R. P. Harris; Lucy J. Carpenter; James Lee; G. Vaughan; Michal T. Filus; Roderic L. Jones; Bin Ouyang; J. A. Pyle; A. D. Robinson; Stephen J. Andrews; Alastair C. Lewis; Jamie Minaeian; Adam Vaughan; J. R. Dorsey; Martin Gallagher; M. Le Breton; Richard D. A. Newton; Carl J. Percival; Hugo Ricketts; S. J.-B. Bauguitte; G. J. Nott; Axel Wellpott; M. J. Ashfold; Johannes Flemming; Robyn Butler; Paul I. Palmer; Paul H. Kaye; C. Stopford; Charles Chemel; Hartmut Boesch

This is the final version of the article. It first appeared from the American Meteorological Society via http://dx.doi.org/10.1175/BAMS-D-14-00290.1


Tellus A | 2009

Convection forced by a descending dry layer and low-level moist convergence

Andrew Russell; G. Vaughan; E. G. Norton; Hugo Ricketts; Cyril J. Morcrette; Tim J. Hewison; K. A. Browning; Alan M. Blyth

Abstract A narrow line of convective showers was observed over southern England on 18 July 2005 during the Convective Storm Initiation Project (CSIP). The showers formed behind a cold front (CF), beneath two apparently descending dry layers (i.e. sloping so that they descended relative to the instruments observing them). The lowermost dry layer was associated with a tropopause fold from a depression, which formed 2 d earlier from a breaking Rossby wave, located northwest of the UK. The uppermost dry layer had fragmented from the original streamer due to rotation around the depression (This rotation was also responsible for the observations of apparent descent—ascent would otherwise be seen behind a CF). The lowermost dry layer descended over the UK and overran higher θw air beneath it, resulting in potential instability. Combined with a surface convergence line (which triggered the convection but had less impact on the convective available potential energy than the potential instability), convection was forced up to 5.5 km where the uppermost dry layer capped it. The period when convection was possible was very short, thus explaining the narrowness of the shower band. Convective Storm Initiation Project observations and model data are presented to illustrate the unique processes in this case.


Journal of Geophysical Research | 2011

Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume

Franco Marenco; Ben Johnson; Kate Turnbull; Stuart M. Newman; James M. Haywood; Helen Webster; Hugo Ricketts


Atmospheric Environment | 2012

A study of the arrival over the United Kingdom in April 2010 of the Eyjafjallajökull ash cloud using ground-based lidar and numerical simulations

B. J. Devenish; David J. Thomson; Franco Marenco; S.J. Leadbetter; Hugo Ricketts; Helen F. Dacre


Atmospheric Science Letters | 2014

Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle

Sam Illingworth; G. Allen; Carl J. Percival; Peter Hollingsworth; Martin Gallagher; Hugo Ricketts; Harry Hayes; Paweł Ładosz; David Crawley; Gareth O. Roberts


Atmospheric Environment | 2011

Mechanisms responsible for the build-up of ozone over South East England during the August 2003 heatwave

Xavier Vazhappilly Francis; Charles Chemel; Ranjeet S. Sokhi; E. G. Norton; Hugo Ricketts; Bernard Fisher


Atmospheric Chemistry and Physics | 2016

Ozonesonde profiles from the West Pacific Warm Pool: measurements and validation

Richard D. A. Newton; G. Vaughan; Hugo Ricketts; Laura L. Pan; Andrew J. Weinheimer; Charles Chemel

Collaboration


Dive into the Hugo Ricketts's collaboration.

Top Co-Authors

Avatar

G. Vaughan

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Charles Chemel

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

G. Allen

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adil Shah

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. G. Norton

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge