Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hugues Abriel is active.

Publication


Featured researches published by Hugues Abriel.


Journal of Clinical Investigation | 1999

Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome

Hugues Abriel; Johannes Loffing; John F. Rebhun; J. Howard Pratt; Laurent Schild; Jean-Daniel Horisberger; Daniela Rotin; Olivier Staub

Liddles syndrome is an inherited form of hypertension linked to mutations in the epithelial Na+ channel (ENaC). ENaC is composed of three subunits (alpha, beta, gamma), each containing a COOH-terminal PY motif (xPPxY). Mutations causing Liddles syndrome alter or delete the PY motifs of beta- or gamma-ENaC. We recently demonstrated that the ubiquitin-protein ligase Nedd4 binds these PY motifs and that ENaC is regulated by ubiquitination. Here, we investigate, using the Xenopus oocyte system, whether Nedd4 affects ENaC function. Overexpression of wild-type Nedd4, together with ENaC, inhibited channel activity, whereas a catalytically inactive Nedd4 stimulated it, likely by acting as a competitive antagonist to endogenous Nedd4. These effects were dependant on the PY motifs, because no Nedd4-mediated changes in channel activity were observed in ENaC lacking them. The effect of Nedd4 on ENaC missing only one PY motif (of beta-ENaC), as originally described in patients with Liddles syndrome, was intermediate. Changes were due entirely to alterations in ENaC numbers at the plasma membrane, as determined by surface binding and immunofluorescence. Our results demonstrate that Nedd4 is a negative regulator of ENaC and suggest that the loss of Nedd4 binding sites in ENaC observed in Liddles syndrome may explain the increase in channel number at the cell surface, increased Na+ reabsorption by the distal nephron, and hence the hypertension.


Clinical Pharmacology & Therapeutics | 2007

Stereoselective block of hERG channel by (S)-methadone and QT interval prolongation in CYP2B6 slow metabolizers

Chin B. Eap; Séverine Crettol; J.-S. Rougier; J. Schläpfer; L. Sintra Grilo; Jean-Jacques Déglon; Jacques Besson; M. Croquette-Krokar; Pierre-Alain Carrupt; Hugues Abriel

Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)‐methadone. Whole‐cell patch‐clamp experiments using cells expressing hERG showed that (S)‐methadone blocked the hERG current 3.5‐fold more potently than (R)‐methadone (IC50s (half‐maximal inhibitory concentrations) at 37°C: 2 and 7 μM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)‐methadone, electrocardiograms, CYP2B6 genotypes, and (R)‐ and (S)‐methadone plasma concentrations were obtained for 179 patients receiving (R,S)‐methadone. The mean heart‐rate‐corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439±25 ms; n=11) than in extensive metabolizers (non *6/*6; 421±25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2–17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)‐methadone.


Journal of Molecular and Cellular Cardiology | 2010

Cardiac sodium channel Nav1.5 and interacting proteins: Physiology and pathophysiology

Hugues Abriel

The cardiac voltage-gated Na(+) channel Na(v)1.5 generates the cardiac Na(+) current (INa). Mutations in SCN5A, the gene encoding Na(v)1.5, have been linked to many cardiac phenotypes, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. The mutations in SCN5A define a sub-group of Na(v)1.5/SCN5A-related phenotypes among cardiac genetic channelopathies. Several research groups have proposed that Na(v)1.5 may be part of multi-protein complexes composed of Na(v)1.5-interacting proteins which regulate channel expression and function. The genes encoding these regulatory proteins have also been found to be mutated in patients with inherited forms of cardiac arrhythmias. The proteins that associate with Na(v)1.5 may be classified as (1) anchoring/adaptor proteins, (2) enzymes interacting with and modifying the channel, and (3) proteins modulating the biophysical properties of Na(v)1.5 upon binding. The aim of this article is to review these Na(v)1.5 partner proteins and to discuss how they may regulate the channels biology and function. These recent investigations have revealed that the expression level, cellular localization, and activity of Na(v)1.5 are finely regulated by complex molecular and cellular mechanisms that we are only beginning to understand.


Circulation Research | 2006

Cardiac Sodium Channel Nav1.5 Is Regulated by a Multiprotein Complex Composed of Syntrophins and Dystrophin

Bruno Gavillet; Jean Sébastien Rougier; Andrea A. Domenighetti; Romina Behar; Christophe Boixel; Patrick Ruchat; Hans A. Lehr; Thierry Pedrazzini; Hugues Abriel

The cardiac sodium channel Nav1.5 plays a key role in cardiac excitability and conduction. The purpose of this study was to elucidate the role of the PDZ domain-binding motif formed by the last three residues (Ser-Ile-Val) of the Nav1.5 C-terminus. Pull-down experiments were performed using Nav1.5 C-terminus fusion proteins and human or mouse heart protein extracts, combined with mass spectrometry analysis. These experiments revealed that the C-terminus associates with dystrophin, and that this interaction was mediated by alpha- and beta-syntrophin proteins. Truncation of the PDZ domain-binding motif abolished the interaction. We used dystrophin-deficient mdx5cv mice to study the role of this protein complex in Nav1.5 function. Western blot experiments revealed a 50% decrease in the Nav1.5 protein levels in mdx5cv hearts, whereas Nav1.5 mRNA levels were unchanged. Patch-clamp experiments showed a 29% decrease of sodium current in isolated mdx5cv cardiomyocytes. Finally, ECG measurements of the mdx5cv mice exhibited a 19% reduction in the P wave amplitude, and an 18% increase of the QRS complex duration, compared with controls. These results indicate that the dystrophin protein complex is required for the proper expression and function of Nav1.5. In the absence of dystrophin, decreased sodium current may explain the alterations in cardiac conduction observed in patients with dystrophinopathies.


Circulation Research | 2011

SAP97 and Dystrophin Macromolecular Complexes Determine Two Pools of Cardiac Sodium Channels Nav1.5 in Cardiomyocytes

Séverine Petitprez; Anne-Flore Zmoos; Jakob Ogrodnik; Elise Balse; Nour Raad; Said El-Haou; Maxime Albesa; Philip Bittihn; Stefan Luther; Stephan E. Lehnart; Stéphane N. Hatem; Alain Coulombe; Hugues Abriel

Rationale: The cardiac sodium channel Nav1.5 plays a key role in excitability and conduction. The 3 last residues of Nav1.5 (Ser-Ile-Val) constitute a PDZ-domain binding motif that interacts with the syntrophin–dystrophin complex. As dystrophin is absent at the intercalated discs, Nav1.5 could potentially interact with other, yet unknown, proteins at this site. Objective: The aim of this study was to determine whether Nav1.5 is part of distinct regulatory complexes at lateral membranes and intercalated discs. Methods and Results: Immunostaining experiments demonstrated that Nav1.5 localizes at lateral membranes of cardiomyocytes with dystrophin and syntrophin. Optical measurements on isolated dystrophin-deficient mdx hearts revealed significantly reduced conduction velocity, accompanied by strong reduction of Nav1.5 at lateral membranes of mdx cardiomyocytes. Pull-down experiments revealed that the MAGUK protein SAP97 also interacts with the SIV motif of Nav1.5, an interaction specific for SAP97 as no pull-down could be detected with other cardiac MAGUK proteins (PSD95 or ZO-1). Furthermore, immunostainings showed that Nav1.5 and SAP97 are both localized at intercalated discs. Silencing of SAP97 expression in HEK293 and rat cardiomyocytes resulted in reduced sodium current (INa) measured by patch-clamp. The INa generated by Nav1.5 channels lacking the SIV motif was also reduced. Finally, surface expression of Nav1.5 was decreased in silenced cells, as well as in cells transfected with SIV-truncated channels. Conclusions: These data support a model with at least 2 coexisting pools of Nav1.5 channels in cardiomyocytes: one targeted at lateral membranes by the syntrophin-dystrophin complex, and one at intercalated discs by SAP97.


Circulation Research | 2004

Cardiac Voltage-Gated Sodium Channel Nav1.5 Is Regulated by Nedd4-2 Mediated Ubiquitination

Miguel X. van Bemmelen; Jean-Sébastien Rougier; Bruno Gavillet; Florine Apothéloz; Dorothée Daidié; Michihiro Tateyama; Ilaria Rivolta; Marc A. Thomas; Robert S. Kass; Olivier Staub; Hugues Abriel

Nav1.5, the cardiac isoform of the voltage-gated Na+ channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Nav1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd4/Nedd4-like ubiquitin-protein ligases. Because Nedd4-2 is well expressed in the heart, we investigated its role in the ubiquitination and regulation of Nav1.5. Yeast two-hybrid and GST-pulldown experiments revealed an interaction between Nav1.5 C-terminus and Nedd4-2, which was abrogated by mutating the essential tyrosine of the PY-motif. Ubiquitination of Nav1.5 was detected in both transfected HEK cells and heart extracts. Furthermore, Nedd4-2–dependent ubiquitination of Nav1.5 was observed. To test for a functional role of Nedd4-2, patch-clamp experiments were performed on HEK cells expressing wild-type and mutant forms of both Nav1.5 and Nedd4-2. Nav1.5 current density was decreased by 65% upon Nedd4-2 cotransfection, whereas the PY-motif mutant channels were not affected. In contrast, a catalytically inactive Nedd4-2 had no effect, indicating that ubiquitination mediates this downregulation. However, Nedd4-2 did not alter the whole-cell or the single channel biophysical properties of Nav1.5. Consistent with the functional findings, localization at the cell periphery of Nav1.5-YFP fusion proteins was reduced upon Nedd4-2 coexpression. The Nedd4-1 isoform did not regulate Nav1.5, suggesting that Nedd4-2 is a specific regulator of Nav1.5. These results demonstrate that Nav1.5 can be ubiquitinated in heart tissues and that the ubiquitin-protein ligase Nedd4-2 acts on Nav1.5 by decreasing the channel density at the cell surface.


Journal of Cell Science | 2004

Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding

Vincent Blot; Fabien Perugi; Marie-Christine Prévost; Laurence Briant; Frédéric Tangy; Hugues Abriel; Olivier Staub; Marie-Christine Dokhélar; Claudine Pique

One of the most exciting recent developments in the field of retroviruses is the finding that their Gag proteins hijack cellular proteins from the mutivesicular body (MVB) pathway during the budding process. The Gag proteins of oncoretroviruses possess a PPxY motif that recruits a ubiquitin ligase from the Nedd4 family, whereas those of the human immunodeficiency virus interact through a PTAP motif with Tsg101, a protein of the ESCRT-1 complex. It is currently assumed that Nedd4 and Tsg101 represent equivalent entry gates towards the same cellular process leading to budding, and that both partners are recruited to the plasma membrane where viral budding occurs. However, we report here that the budding of the human oncoretrovirus HTLV-1, the Gag proteins of which possess tandem PPPY/PTAP motifs, requires both Nedd4 and Tsg101. We show that Nedd4.1, but not Nedd4.2, is recruited by the PPPY motif of Gag and subsequently catalyzes Gag ubiquitination. We also demonstrate that Gag interacts first with Nedd4.1 at the plasma membrane and then with Tsg101 in late endosomes/MVBs. Consistently, we found that HTLV-1 particles mutated in the PPPY motif remain underneath the plasma membrane, blocked at an early step of the budding process, whereas PTAP-mutated viruses accumulate in intracellular vesicles, blocked at a later step. Our findings indicate that Nedd4.1 and Tsg101 act successively in the assembly process of HTLV-1 to ensure proper Gag trafficking through the endocytic pathway up to late endosomes where the late steps of retroviral release occur.


European Heart Journal | 2011

Identification of a novel loss-of-function calcium channel gene mutation in short QT syndrome (SQTS6)

Christian Templin; Jelena-Rima Ghadri; Jean-Sébastien Rougier; Alessandra Baumer; Vladimir Kaplan; Maxime Albesa; Heinrich Sticht; Anita Rauch; Colleen Puleo; Dan Hu; Hector Barajas-Martinez; Charles Antzelevitch; Thomas F. Lüscher; Hugues Abriel; Firat Duru

AIMS Short QT syndrome (SQTS) is a genetically determined ion-channel disorder, which may cause malignant tachyarrhythmias and sudden cardiac death. Thus far, mutations in five different genes encoding potassium and calcium channel subunits have been reported. We present, for the first time, a novel loss-of-function mutation coding for an L-type calcium channel subunit. METHODS AND RESULTS The electrocardiogram of the affected member of a single family revealed a QT interval of 317 ms (QTc 329 ms) with tall, narrow, and symmetrical T-waves. Invasive electrophysiological testing showed short ventricular refractory periods and increased vulnerability to induce ventricular fibrillation. DNA screening of the patient identified no mutation in previously known SQTS genes; however, a new variant at a heterozygous state was identified in the CACNA2D1 gene (nucleotide c.2264G > C; amino acid p.Ser755Thr), coding for the Ca(v)α(2)δ-1 subunit of the L-type calcium channel. The pathogenic role of the p.Ser755Thr variant of the CACNA2D1 gene was analysed by using co-expression of the two other L-type calcium channel subunits, Ca(v)1.2α1 and Ca(v)β(2b), in HEK-293 cells. Barium currents (I(Ba)) were recorded in these cells under voltage-clamp conditions using the whole-cell configuration. Co-expression of the p.Ser755Thr Ca(v)α(2)δ-1 subunit strongly reduced the I(Ba) by more than 70% when compared with the co-expression of the wild-type (WT) variant. Protein expression of the three subunits was verified by performing western blots of total lysates and cell membrane fractions of HEK-293 cells. The p.Ser755Thr variant of the Ca(v)α(2)δ-1 subunit was expressed at a similar level compared with the WT subunit in both fractions. Since the mutant Ca(v)α(2)δ-1 subunit did not modify the expression of the pore-forming subunit of the L-type calcium channel, Ca(v)1.2α1, it suggests that single channel biophysical properties of the L-type channel are altered by this variant. CONCLUSION In the present study, we report the first pathogenic mutation in the CACNA2D1 gene in humans, which causes a new variant of SQTS. It remains to be determined whether mutations in this gene lead to other manifestations of the J-wave syndrome.


FEBS Letters | 2000

Regulation of the cardiac voltage-gated Na+ channel (H1) by the ubiquitin-protein ligase Nedd4

Hugues Abriel; Elena Kamynina; Jean-Daniel Horisberger; Olivier Staub

The cardiac voltage‐gated Na+ channel H1, involved in the generation of cardiac action potential, contains a C‐terminal PY motif (xPPxY). Since PY motifs are known ligands to WW domains, we investigated their role for H1 regulation and the possible involvement of the WW domain containing ubiquitin‐protein ligase Nedd4, taking advantage of the Xenopus oocyte system. Mutation of the PY motif leads to higher peak currents when compared to wild‐type channel. Moreover, co‐expression of Nedd4 reduced the peak currents, whereas an enzymatically inactive Nedd4 mutant increased them, likely by competing with endogenous Nedd4. The effect of Nedd4 was not observed in the PY motif mutated channel or in the skeletal muscle voltage‐gated Na+ channel, which lacks a PY motif. We conclude that H1 may be regulated by Nedd4 depending on WW–PY interaction, and on an active ubiquitination site.


Biochimica et Biophysica Acta | 2013

Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: The multiple pool model

Diana Shy; Ludovic Gillet; Hugues Abriel

The cardiac sodium current (INa) is responsible for the rapid depolarization of cardiac cells, thus allowing for their contraction. It is also involved in regulating the duration of the cardiac action potential (AP) and propagation of the impulse throughout the myocardium. Cardiac INa is generated by the voltage-gated Na(+) channel, NaV1.5, a 2016-residue protein which forms the pore of the channel. Over the past years, hundreds of mutations in SCN5A, the human gene coding for NaV1.5, have been linked to many cardiac electrical disorders, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. Similar to many membrane proteins, NaV1.5 has been found to be regulated by several interacting proteins. In some cases, these different proteins, which reside in distinct membrane compartments (i.e. lateral membrane vs. intercalated disks), have been shown to interact with the same regulatory domain of NaV1.5, thus suggesting that several pools of NaV1.5 channels may co-exist in cardiac cells. The aim of this review article is to summarize the recent works that demonstrate its interaction with regulatory proteins and illustrate the model that the sodium channel NaV1.5 resides in distinct and different pools in cardiac cells. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Collaboration


Dive into the Hugues Abriel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge