Hugues Ripoche
Institut Gustave Roussy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hugues Ripoche.
Cancer Research | 2010
Lorenzo Galluzzi; Eugenia Morselli; Ilio Vitale; Oliver Kepp; Laura Senovilla; Alfredo Criollo; Nicolas Servant; Philippe Hupé; Thomas Robert; Hugues Ripoche; Vladimir Lazar; Annick Harel-Bellan; Philippe Dessen; Emmanuel Barillot; Guido Kroemer
MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.
Cancer Research | 2007
Thibault De La Motte Rouge; Lorenzo Galluzzi; Ken André Olaussen; Yael Zermati; Ezgi Tasdemir; Thomas Robert; Hugues Ripoche; Vladimir Lazar; Philippe Dessen; Francis Harper; Gérard Pierron; Guillaume Pinna; Natalia Araujo; Annick Harel-Belan; Jean-Pierre Armand; Tai Wai Wong; Guido Kroemer
Non-small cell lung cancer (NSCLC) with activating mutations in the epidermal growth factor receptor (EGFR) responds to EGFR tyrosine kinase inhibitors such as erlotinib. However, secondary somatic EGFR mutations (e.g., T790M) confer resistance to erlotinib. BMS-690514, a novel panHER/vascular endothelial growth factor receptor (VEGFR) inhibitor described here, exerted antiproliferative and proapoptotic effects on NSCLC cell lines, with prominent efficacy on H1975 cells expressing the T790M mutation. In this model, BMS-690514 induced a G(1) cell cycle arrest, as well as ultrastructural hallmarks of apoptosis, mitochondrial release of cytochrome c, and activation of caspases involved in the intrinsic (e.g., caspase-2, caspase-3, caspase-7, and caspase-9), but not in the extrinsic (e.g., caspase-8), pathway. Caspase inhibition conferred partial protection against BMS-690514 cytotoxicity, pointing to the involvement of both caspase-dependent and caspase-independent effector mechanisms. Transcriptome analyses revealed the up-regulation of proapoptotic (e.g., Bim, Puma) and cell cycle inhibitory (e.g., p27(Kip1), p57(Kip2)) factors, as well as the down-regulation of antiapoptotic (e.g., Mcl1), heat shock (e.g., HSP40, HSP70, HSP90), and cell cycle promoting [e.g., cyclins B1, D1, and D3; cyclin-dependent kinase 1 (CDK1); MCM family proteins; proliferating cell nuclear antigen (PCNA)] proteins. BMS-690514-induced death of H1975 cells was modified in a unique fashion by a panel of small interfering RNAs targeting apoptosis modulators. Down-regulation of components of the nuclear factor-kappaB survival pathway (e.g., p65, Nemo/IKK gamma, TAB2) sensitized cells to BMS-690514, whereas knockdown of proapoptotic factors (e.g., Puma, Bax, Bak, caspase-2, etc.) and DNA damage-related proteins (e.g., ERCC1, hTERT) exerted cytoprotective effects. BMS-690514 is a new pan-HER/VEGFR inhibitor that may become an alternative to erlotinib for the treatment of NSCLC.
Cancer Research | 2004
Maryam Diarra-Mehrpour; Samuel Arrabal; Abdelali Jalil; Xavier Pinson; Catherine Gaudin; Geneviève Piétu; Amandine Pitaval; Hugues Ripoche; Marc Eloit; Dominique Dormont; Salem Chouaib
To define genetic determinants of tumor cell resistance to the cytotoxic action of tumor necrosis factor α (TNF), we have applied cDNA microarrays to a human breast carcinoma TNF-sensitive MCF7 cell line and its established TNF-resistant clone. Of a total of 5760 samples of cDNA examined, 3.6% were found to be differentially expressed in TNF-resistant 1001 cells as compared with TNF-sensitive MCF7 cells. On the basis of available literature data, the striking finding is the association of some differentially expressed genes involved in the phosphatidylinositol-3-kinase/Akt signaling pathway. More notably, we found that the PRNP gene coding for the cellular prion protein (PrPc), was 17-fold overexpressed in the 1001 cell line as compared with the MCF7 cell line. This differential expression was confirmed at the cell surface by immunostaining that indicated that PrPc is overexpressed at both mRNA and protein levels in the TNF-resistant derivative. Using recombinant adenoviruses expressing the human PrPc, our data demonstrate that PrPc overexpression converted TNF-sensitive MCF7 cells into TNF-resistant cells, at least in part, by a mechanism involving alteration of cytochrome c release from mitochondria and nuclear condensation.
American Journal of Pathology | 2005
Ludovic Lacroix; Vladimir Lazar; Stefan Michiels; Hugues Ripoche; Philippe Dessen; Monique Talbot; Bernard Caillou; Jean-Pierre Levillain; Martin Schlumberger; Jean-Michel Bidart
Follicular thyroid carcinomas (FTC) arise through oncogenic pathways distinct from those involved in the papillary histotype. Recently, a t(2;3)(q13;p25) rearrangement, which juxtaposes the thyroid transcription factor PAX8 to the peroxisome proliferator-activated receptor (PPAR) gamma1, was described in FTCs. In this report, we describe gene expression in 11 normal tissues, 4 adenomas, and 8 FTCs, with or without the PAX8-PPARgamma1 translocation, using custom 60-mer oligonucleotide microarrays. Results were confirmed by quantitative real-time polymerase chain reaction of 65 thyroid tissues and by immunohistochemistry. Statistical analysis revealed a pattern of 93 genes discriminating FTCs, with or without the translocation, that were morphologically undistinguishable. Although the expression of thyroid-specific genes was detectable, none appeared to be differentially regulated between tumors with or without the translocation. Differentially expressed genes included genes related to lipid/glucose/amino acid metabolism, tumorigenesis, and angiogenesis. Surprisingly, several PPARgamma target genes were up-regulated in PAX8-PPARgamma-positive FTCs such as angiopoietin-like 4 and aquaporin 7. Moreover many genes involved in PAX8-PPARgamma expression profile presented a putative PPARgamma-promoter site, compatible with a direct activity of the fusion product. These data identify several differentially expressed genes, such as FGD3, that may serve as potential targets of PPARgamma and as members of novel molecular pathways involved in the development of thyroid carcinomas.
BMC Genomics | 2007
Robert A. Ach; Arno N. Floore; Bo Curry; Vladimir Lazar; Annuska M. Glas; Rob Pover; Anya Tsalenko; Hugues Ripoche; Fatima Cardoso; Mahasti Saghatchian d'Assignies; Laurakay Bruhn; Laura J. van't Veer
BackgroundThe increasing use of DNA microarrays in biomedical research, toxicogenomics, pharmaceutical development, and diagnostics has focused attention on the reproducibility and reliability of microarray measurements. While the reproducibility of microarray gene expression measurements has been the subject of several recent reports, there is still a need for systematic investigation into what factors most contribute to variability of measured expression levels observed among different laboratories and different experimenters.ResultsWe report the results of an interlaboratory comparison of gene expression array measurements on the same microarray platform, in which the RNA amplification and labeling, hybridization and wash, and slide scanning were each individually varied. Identical input RNA was used for all experiments. While some sources of variation have measurable influence on individual microarray signals, they showed very low influence on sample-to-reference ratios based on averaged triplicate measurements in the two-color experiments. RNA labeling was the largest contributor to interlaboratory variation.ConclusionDespite this variation, measurement of one particular breast cancer gene expression signature in three different laboratories was found to be highly robust, showing a high intralaboratory and interlaboratory reproducibility when using strictly controlled standard operating procedures.
Molecular Oncology | 2008
Jean Bénard; Gilda Raguénez; Audrey Kauffmann; Alexander Valent; Hugues Ripoche; Virginie Joulin; B. Job; Gisèle Danglot; Sabrina Cantais; Thomas Robert; Marie-José Terrier-Lacombe; Agnès Chassevent; Serge Koscielny; Matthias Fischer; Frank Berthold; Marc Lipinski; Thomas Tursz; Philippe Dessen; Vladimir Lazar; Dominique Valteau-Couanet
Stage 4 neuroblastoma (NB) are heterogeneous regarding their clinical presentations and behavior. Indeed infants (stage 4S and non‐stage 4S of age <365days at diagnosis) show regression contrasting with progression in children (>365days). Our study aimed at: (i) identifying age‐based genomic and gene expression profiles of stage 4 NB supporting this clinical stratification; and (ii) finding a stage 4S NB signature. Differential genome and transcriptome analyses of a learning set of MYCN‐non amplified stage 4 NB tumors at diagnosis (n=29 tumors including 12 stage 4S) were performed using 1Mb BAC microarrays and Agilent 22K probes oligo‐microarrays. mRNA chips data following filtering yielded informative genes before supervised hierarchical clustering to identify relationship among tumor samples. After confirmation by quantitative RT‐PCR, a stage 4S NBs gene cluster was obtained and submitted to a validation set (n=22 tumors). Genomic abnormalities of infants tumors (whole chromosomes gains or loss) differ radically from that of children (intra‐chromosomal rearrangements) but could not discriminate infants with 4S from those without this presentation. In contrast, differential gene expression by looking at both individual genes and whole biological pathways leads to a molecular stage 4S NB portrait which provides new biological clues about this fascinating entity.
Clinical Cancer Research | 2007
Pascale Lévy; Hugues Ripoche; Ingrid Laurendeau; Vladimir Lazar; Nicolas Ortonne; Béatrice Parfait; Karen Leroy; Janine Wechsler; Isabelle Salmon; Pierre Wolkenstein; Philippe Dessen; Michel Vidaud; Dominique Vidaud; Ivan Bièche
Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder with a complex variety of clinical manifestations. The hallmark of NF1 is the onset of heterogeneous (dermal or plexiform) benign neurofibromas. Plexiform neurofibromas can give rise to malignant peripheral nerve sheath tumors, which are resistant to conventional therapies. Experimental Design: To identify new signaling pathways involved in the malignant transformation of plexiform neurofibromas, we applied a 22,000-oligonucleotide microarray approach to a series of plexiform neurofibromas and malignant peripheral nerve sheath tumors. Changes in the expression of selected genes were then confirmed by real-time quantitative reverse transcription-PCR. Results: We identified two tenascin gene family members that were significantly deregulated in both human NF1-associated tumors and NF1-deficient primary cells: Tenascin C (TNC) was up-regulated whereas tenascin XB (TNXB) was down-regulated during tumor progression. TNC activation is mainly due to the up-regulation of large TNC splice variants. Immunohistochemical studies showed that TNC transcripts are translated into TNC protein in TNC-overexpressing tumors. Aberrant transcriptional activation of TNC seems to be principally mediated by activator protein transcription factor complexes. Conclusion:TNXB and TNC may be involved in the malignant transformation of plexiform neurofibromas. Anti-TNC antibodies, already used successfully in clinical trials to treat malignant human gliomas, may be an appropriate new therapeutic strategy for NF1.
BMC Medical Genomics | 2013
Vladimir Lazar; Chen Suo; Cedric Orear; Joost van den Oord; Zsofia Balogh; Justine Guegan; B. Job; Guillaume Meurice; Hugues Ripoche; Stefano Calza; Johanna Hasmats; Joakim Lundeberg; Ludovic Lacroix; Philippe Vielh; Fabienne Dufour; Janne Lehtiö; Rudolf Napieralski; Alexander Eggermont; Manfred Schmitt; Jacques Cadranel; Benjamin Besse; Philippe Girard; Fiona Blackhall; Pierre Validire; Jean-Charles Soria; Philippe Dessen; Johan Hansson; Yudi Pawitan
BackgroundNon-small cell lung cancer (NSCLC), a leading cause of cancer deaths, represents a heterogeneous group of neoplasms, mostly comprising squamous cell carcinoma (SCC), adenocarcinoma (AC) and large-cell carcinoma (LCC). The objectives of this study were to utilize integrated genomic data including copy-number alteration, mRNA, microRNA expression and candidate-gene full sequencing data to characterize the molecular distinctions between AC and SCC.MethodsComparative genomic hybridization followed by mutational analysis, gene expression and miRNA microarray profiling were performed on 123 paired tumor and non-tumor tissue samples from patients with NSCLC.ResultsAt DNA, mRNA and miRNA levels we could identify molecular markers that discriminated significantly between the various histopathological entities of NSCLC. We identified 34 genomic clusters using aCGH data; several genes exhibited a different profile of aberrations between AC and SCC, including PIK3CA, SOX2, THPO, TP63, PDGFB genes. Gene expression profiling analysis identified SPP1, CTHRC1and GREM1 as potential biomarkers for early diagnosis of the cancer, and SPINK1 and BMP7 to distinguish between AC and SCC in small biopsies or in blood samples. Using integrated genomics approach we found in recurrently altered regions a list of three potential driver genes, MRPS22, NDRG1 and RNF7, which were consistently over-expressed in amplified regions, had wide-spread correlation with an average of ~800 genes throughout the genome and highly associated with histological types. Using a network enrichment analysis, the targets of these potential drivers were seen to be involved in DNA replication, cell cycle, mismatch repair, p53 signalling pathway and other lung cancer related signalling pathways, and many immunological pathways. Furthermore, we also identified one potential driver miRNA hsa-miR-944.ConclusionsIntegrated molecular characterization of AC and SCC helped identify clinically relevant markers and potential drivers, which are recurrent and stable changes at DNA level that have functional implications at RNA level and have strong association with histological subtypes.
Molecular Cancer | 2011
Ivan Bièche; Sophie Vacher; François Lallemand; Sengül Tozlu-Kara; Hind Bennani; Michèle Beuzelin; Keltouma Driouch; Etienne Rouleau; Florence Lerebours; Hugues Ripoche; Géraldine Cizeron-Clairac; F. Spyratos; Rosette Lidereau
BackgroundAneuploidy and chromosomal instability (CIN) are common abnormalities in human cancer. Alterations of the mitotic spindle checkpoint are likely to contribute to these phenotypes, but little is known about somatic alterations of mitotic spindle checkpoint genes in breast cancer.MethodsTo obtain further insight into the molecular mechanisms underlying aneuploidy in breast cancer, we used real-time quantitative RT-PCR to quantify the mRNA expression of 76 selected mitotic spindle checkpoint genes in a large panel of breast tumor samples.ResultsThe expression of 49 (64.5%) of the 76 genes was significantly dysregulated in breast tumors compared to normal breast tissues: 40 genes were upregulated and 9 were downregulated. Most of these changes in gene expression during malignant transformation were observed in epithelial cells.Alterations of nine of these genes, and particularly NDC80, were also detected in benign breast tumors, indicating that they may be involved in pre-neoplastic processes.We also identified a two-gene expression signature (PLK1 + AURKA) which discriminated between DNA aneuploid and DNA diploid breast tumor samples. Interestingly, some DNA tetraploid tumor samples failed to cluster with DNA aneuploid breast tumors.ConclusionThis study confirms the importance of previously characterized genes and identifies novel candidate genes that could be activated for aneuploidy to occur. Further functional analyses are required to clearly confirm the role of these new identified genes in the molecular mechanisms involved in breast cancer aneuploidy. The novel genes identified here, and/or the two-gene expression signature, might serve as diagnostic or prognostic markers and form the basis for novel therapeutic strategies.
PLOS ONE | 2009
Alexandre Valin; Stéphanie Barnay-Verdier; Thomas Robert; Hugues Ripoche; Florence Brellier; Odile Chevallier-Lagente; Marie-Françoise Avril; Thierry Magnaldo
Gorlins or nevoid basal cell carcinoma syndrome (NBCCS) causes predisposition to basal cell carcinoma (BCC), the commonest cancer in adult human. Mutations in the tumor suppressor gene PTCH1 are responsible for this autosomal dominant syndrome. In NBCCS patients, as in the general population, ultraviolet exposure is a major risk factor for BCC development. However these patients also develop BCCs in sun-protected areas of the skin, suggesting the existence of other mechanisms for BCC predisposition in NBCCS patients. As increasing evidence supports the idea that the stroma influences carcinoma development, we hypothesized that NBCCS fibroblasts could facilitate BCC occurence of the patients. WT (n = 3) and NBCCS fibroblasts bearing either nonsense (n = 3) or missense (n = 3) PTCH1 mutations were cultured in dermal equivalents made of a collagen matrix and their transcriptomes were compared by whole genome microarray analyses. Strikingly, NBCCS fibroblasts over-expressed mRNAs encoding pro-tumoral factors such as Matrix Metalloproteinases 1 and 3 and tenascin C. They also over-expressed mRNA of pro-proliferative diffusible factors such as fibroblast growth factor 7 and the stromal cell-derived factor 1 alpha, known for its expression in carcinoma associated fibroblasts. These data indicate that the PTCH1+/− genotype of healthy NBCCS fibroblasts results in phenotypic traits highly reminiscent of those of BCC associated fibroblasts, a clue to the yet mysterious proneness to non photo-exposed BCCs in NBCCS patients.