Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui Jiang is active.

Publication


Featured researches published by Hui Jiang.


Applied and Environmental Microbiology | 2013

Improvement of natamycin production by engineering of phosphopantetheinyl transferases in Streptomyces chattanoogensis L10.

Hui Jiang; Yue-Yue Wang; Xin-Xin Ran; Wei-Ming Fan; Xin-Hang Jiang; Wen-Jun Guan; Yong-Quan Li

ABSTRACT Phosphopantetheinyl transferases (PPTases) are essential to the activities of type I/II polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) through converting acyl carrier proteins (ACPs) in PKSs and peptidyl carrier proteins (PCPs) in NRPSs from inactive apo-forms into active holo-forms, leading to biosynthesis of polyketides and nonribosomal peptides. The industrial natamycin (NTM) producer, Streptomyces chattanoogensis L10, contains two PPTases (SchPPT and SchACPS) and five PKSs. Biochemical characterization of these two PPTases shows that SchPPT catalyzes the phosphopantetheinylation of ACPs in both type I PKSs and type II PKSs, SchACPS catalyzes the phosphopantetheinylation of ACPs in type II PKSs and fatty acid synthases (FASs), and the specificity of SchPPT is possibly controlled by its C terminus. Inactivation of SchPPT in S. chattanoogensis L10 abolished production of NTM but not the spore pigment, while overexpression of the SchPPT gene not only increased NTM production by about 40% but also accelerated productions of both NTM and the spore pigment. Thus, we elucidated a comprehensive phosphopantetheinylation network of PKSs and improved polyketide production by engineering the cognate PPTase in bacteria.


Microbiological Research | 2015

Generation of the natamycin analogs by gene engineering of natamycin biosynthetic genes in Streptomyces chattanoogensis L10

Shui-Ping Liu; Peng-Hui Yuan; Yue-Yue Wang; Xiao-Fang Liu; Zhen-Xing Zhou; Qing-Ting Bu; Pin Yu; Hui Jiang; Yong-Quan Li

The polyene antibiotic natamycin is widely used as an antifungal agent in both human therapy and the food industry. Here we obtained four natamycin analogs with high titers, including two new compounds, by engineering of six post-polyketide synthase (PKS) tailoring enzyme encoding genes in a natamycin industrial producing strain, Streptomyces chattanoogensis L10. Precise analysis of S. chattanoogensis L10 culture identified natamycin and two natamycin analogs, 4,5-deepoxy-natamycin and 4,5-deepoxy-natamycinolide. The scnD deletion mutant of S. chattanoogensis L10 did not produce natamycin but increased the titer of 4,5-deepoxy-natamycin. Inactivation of each of scnK, scnC, and scnJ in S. chattanoogensis L10 abolished natamycin production and accumulated 4,5-deepoxy-natamycinolide. Deletion of scnG in S. chattanoogensis L10 resulted in production of two new compounds, 4,5-deepoxy-12-decarboxyl-12-methyl-natamycin and its dehydration product without natamycin production. Inactivation of the ScnG-associated ferredoxin ScnF resulted in impaired production of natamycin. Bioassay of these natamycin analogs showed that three natamycin analogs remained antifungal activities. We found that homologous glycosyltransferases genes including amphDI and nysDI can partly complement the ΔscnK mutant. Our results here also support that ScnG, ScnK, and ScnD catalyze carboxylation, glycosylation, and epoxidation in turn in the natamycin biosynthetic pathway. Thus this paper provided a method to generate natamycin analogs and shed light on the natamycin biosynthetic pathway.


FEBS Journal | 2015

An acyltransferase domain of FK506 polyketide synthase recognizing both an acyl carrier protein and coenzyme A as acyl donors to transfer allylmalonyl and ethylmalonyl units

Hui Jiang; Yue-Yue Wang; Yuan-Yang Guo; Jie-Jie Shen; Xiao-Sheng Zhang; Hong-Dou Luo; Ni-Ni Ren; Xin-Hang Jiang; Yong-Quan Li

Acyltransferase (AT) domains of polyketide synthases (PKSs) usually use coenzyme A (CoA) as an acyl donor to transfer common acyl units to acyl carrier protein (ACP) domains, initiating incorporation of acyl units into polyketides. Two clinical immunosuppressive agents, FK506 and FK520, are biosynthesized by the same PKSs in several Streptomyces strains. In this study, characterization of AT4FkbB (the AT domain of the fourth module of FK506 PKS) in transacylation reactions showed that AT4FkbB recognizes both an ACP domain (ACPTcsA) and CoA as acyl donors for transfer of a unique allylmalonyl (AM) unit to an acyl acceptor ACP domain (ACP4FkbB), resulting in FK506 production. In addition, AT4FkbB uses CoA as an acyl donor to transfer an unusual ethylmalonyl (EM) unit to ACP4FkbB, resulting in FK520 production, and transfers AM units to non‐native ACP acceptors. Characterization of AT4FkbB in self‐acylation reactions suggests that AT4FkbB controls acyl unit specificity in transacylation reactions but not in self‐acylation reactions. Generally, AT domains of PKSs only recognize one acyl donor; however, we report here that AT4FkbB recognizes two acyl donors for the transfer of different acyl units.


Scientific Reports | 2016

Characterization of Discrete Phosphopantetheinyl Transferases in Streptomyces tsukubaensis L19 Unveils a Complicate Phosphopantetheinylation Network.

Yue-Yue Wang; Xiao-Sheng Zhang; Hong-Dou Luo; Ni-Ni Ren; Xin-Hang Jiang; Hui Jiang; Yong-Quan Li

Phosphopantetheinyl transferases (PPTases) play essential roles in both primary metabolisms and secondary metabolisms via post-translational modification of acyl carrier proteins (ACPs) and peptidyl carrier proteins (PCPs). In this study, an industrial FK506 producing strain Streptomyces tsukubaensis L19, together with Streptomyces avermitilis, was identified to contain the highest number (five) of discrete PPTases known among any species thus far examined. Characterization of the five PPTases in S. tsukubaensis L19 unveiled that stw ACP, an ACP in a type II PKS, was phosphopantetheinylated by three PPTases FKPPT1, FKPPT3, and FKACPS; sts FAS ACP, the ACP in fatty acid synthase (FAS), was phosphopantetheinylated by three PPTases FKPPT2, FKPPT3, and FKACPS; TcsA-ACP, an ACP involved in FK506 biosynthesis, was phosphopantetheinylated by two PPTases FKPPT3 and FKACPS; FkbP-PCP, an PCP involved in FK506 biosynthesis, was phosphopantetheinylated by all of these five PPTases FKPPT1-4 and FKACPS. Our results here indicate that the functions of these PPTases complement each other for ACPs/PCPs substrates, suggesting a complicate phosphopantetheinylation network in S. tsukubaensis L19. Engineering of these PPTases in S. tsukubaensis L19 resulted in a mutant strain that can improve FK506 production.


FEBS Letters | 2014

Characterization of type II thioesterases involved in natamycin biosynthesis in Streptomyces chattanoogensis L10

Yue-Yue Wang; Xin-Xin Ran; Wei-Bin Chen; Shui-Ping Liu; Xiao-Sheng Zhang; Yuan-Yang Guo; Xin-Hang Jiang; Hui Jiang; Yong-Quan Li

The known functions of type II thioesterases (TEIIs) in type I polyketide synthases (PKSs) include selecting of starter acyl units, removal of aberrant extender acyl units, releasing of final products, and dehydration of polyketide intermediates. In this study, we characterized two TEIIs (ScnI and PKSIaTEII) from Streptomyces chattanoogensis L10. Deletion of scnI in S. chattanoogensis L10 decreased the natamycin production by about 43%. Both ScnI and PKSIaTEII could remove acyl units from the acyl carrier proteins (ACPs) involved in the natamycin biosynthesis. Our results show that the TEII could play important roles in both the initiation step and the elongation steps of a polyketide biosynthesis; the intracellular TEIIs involved in different biosynthetic pathways could complement each other.


Protein and Peptide Letters | 2014

Biochemical Characterization of a Malonyl-Specific Acyltransferase Domain of FK506 Biosynthetic Polyketide Synthase

Yue-Yue Wang; Long-Fei Bai; Xin-Xin Ran; Xin-Hang Jiang; Hui Wu; Wei Zhang; Mei-Ying Jin; Yong-Quan Li; Hui Jiang

Acyltransferases (ATs) play an essential role in the polyketide biosynthesis through transferring acyl units into acyl carrier proteins (ACPs) via a self-acylation reaction and a transacylation reaction. Here we used AT10FkbA of FK506 biosynthetic polyketide synthase (PKS) from Streptomyces tsukubaensis YN06 as a model to study the specificity of ATs for acyl units. Our results show that AT10FkbA can form both malonyl-O-AT10FkbA and methylmalonyl-O-AT10FkbA in the self-acylation reaction, however, only malonyl-O-AT10FkbA but not methylmalonyl-O-AT10FkbA can transfer the acyl unit into ACPs in the transacylation reaction. Unlike some ATs that are known to control the acyl specificity in self-acylation reactions, AT10FkbA controls the acyl specificity in transacylation reactions.


Journal of Industrial Microbiology & Biotechnology | 2016

FkbN and Tcs7 are pathway-specific regulators of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis L19

Xiao-Sheng Zhang; Hong-Dou Luo; Yang Tao; Yue-Yue Wang; Xin-Hang Jiang; Hui Jiang; Yong-Quan Li

FK506 (tacrolimus), which is produced by many Streptomyces strains, is clinically used as an immunosuppressive agent and for treatment of inflammatory skin diseases. Here, we identified that the FK506 biosynthetic gene cluster in an industrial FK506-producing strain Streptomyces tsukubaensis L19 is organized as eight transcription units. Two pathway-specific regulators, FkbN and Tcs7, involved in FK506 biosynthesis from S. tsukubaensis L19 were characterized in vivo and in vitro. FkbN activates the transcription of six transcription units in FK506 biosynthetic gene cluster, and Tcs7 activates the transcription of fkbN. In addition, the DNA-binding specificity of FkbN was determined. Finally, a high FK506-producing strain was constructed by overexpression of both fkbN and tcs7 in S. tsukubaensis L19, which improved FK506 production by 89xa0% compared to the parental strain.


Organic Letters | 2015

Identification and Biosynthetic Characterization of Natural Aromatic Azoxy Products from Streptomyces chattanoogensis L10

Yuan-Yang Guo; Han Li; Zhen-Xing Zhou; Xu-Ming Mao; Yi Tang; Xin Chen; Xin-Hang Jiang; Yu Liu; Hui Jiang; Yong-Quan Li

Aromatic azoxy compounds recently attracted wide interest for their unique liquid crystalline properties. However, biosynthetic pathways of natural azoxy products have rarely been reported. Three novel aromatic azoxy compounds, azoxymycins A, B, and C, have been isolated and identified from Streptomyces chattanoogensis L10, and their biosynthetic pathways have been reported.


PLOS ONE | 2014

Characterization and evolutionary implications of the triad Asp-Xxx-Glu in group II phosphopantetheinyl transferases.

Yue-Yue Wang; Yu-Dong Li; Jian-Bo Liu; Xin-Xin Ran; Yuan-Yang Guo; Ni-Ni Ren; Xin Chen; Hui Jiang; Yong-Quan Li

Phosphopantetheinyl transferases (PPTases), which play an essential role in both primary and secondary metabolism, are magnesium binding enzymes. In this study, we characterized the magnesium binding residues of all known group II PPTases by biochemical and evolutionary analysis. Our results suggested that group II PPTases could be classified into two subgroups, two-magnesium-binding-residue-PPTases containing the triad Asp-Xxx-Glu and three-magnesium-binding-residue-PPTases containing the triad Asp-Glu-Glu. Mutations of two three-magnesium-binding-residue-PPTases and one two-magnesium-binding-residue-PPTase indicate that the first and the third residues in the triads are essential to activities; the second residues in the triads are non-essential. Although variations of the second residues in the triad Asp-Xxx-Glu exist throughout the whole phylogenetic tree, the second residues are conserved in animals, plants, algae, and most prokaryotes, respectively. Evolutionary analysis suggests that: the animal group II PPTases may originate from one common ancestor; the plant two-magnesium-binding-residue-PPTases may originate from one common ancestor; the plant three-magnesium-binding-residue-PPTases may derive from horizontal gene transfer from prokaryotes.


Archives of Microbiology | 2016

The substrate promiscuity of a phosphopantetheinyl transferase SchPPT for coenzyme A derivatives and acyl carrier proteins

Yue-Yue Wang; Hong-Dou Luo; Xiao-Sheng Zhang; Tao Lin; Hui Jiang; Yong-Quan Li

Phosphopantetheinyl transferases (PPTases) catalyze the posttranslational modification of acyl carrier proteins (ACPs) in fatty acid synthases (FASs), ACPs in polyketide synthases, and peptidyl carrier proteins (PCPs) in nonribosomal peptide synthetases (NRPSs) in all organisms. Some bacterial PPTases have broad substrate specificities for ACPs/PCPs and/or coenzyme A (CoA)/CoA analogs, facilitating their application in metabolite production in hosts and/or labeling of ACPs/PCPs, respectively. Here, a group II PPTase SchPPT from Streptomyces chattanoogensis L10 was characterized to accept a heterologous ACP and acetyl-CoA. Thus, SchPPT is a promiscuous PPTase and may be used on polyketide production in heterologous bacterial host and labeling of ACPs.

Collaboration


Dive into the Hui Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge