Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hui Ru Tan is active.

Publication


Featured researches published by Hui Ru Tan.


ACS Nano | 2009

SINGLE-CRYSTALLINE MFE2O4 NANOTUBES/NANORINGSSYNTHESIZED BY THERMAL TRANSFORMATION PROCESS FOR BIOLOGICAL APPLICATIONS

H. M. Fan; Jiabao Yi; Yi Yang; Kiang-Wei Kho; Hui Ru Tan; Zexiang Shen; Jun Ding; Xiao Wei Sun; Malini Olivo; Yuan Ping Feng

We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 < x < 1) intermediate. The transformed ferrites nanocrystals retain the hollow structure and single-crystalline nature of the original templates. However, the crystallographic orientation-relationships of cubic spinel ferrites and trigonal hematite show strong correlation with their morpologies. The hollow-structured MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.


Journal of the American Chemical Society | 2011

Plasmonic gold nanocrosses with multidirectional excitation and strong photothermal effect.

Enyi Ye; Khin Yin Win; Hui Ru Tan; Ming Lin; Choon Peng Teng; Adnen Mlayah; Ming-Yong Han

We report a facile chemical synthesis of well-defined gold nanocrosses through anisotropic growth along both <110> and <001>, whereas gold nanorods grow only along either <110> or <001>. The multiple branching was achieved by breaking the face-centered-cubic lattice symmetry of gold through copper-induced formation of single or double twins, and the resulting gold nanocrosses exhibited pronounced near-IR absorption with a great extension to the mid-IR region. As studied by discrete dipole approximation (DDA) simulations, the entire nanocross gets excited even when one of the branches is exposed to incident light. The above properties make them useful as octopus antennas for capturing near-IR light for effective photothermal destruction of cells. The cell damage process was analyzed using the Arrhenius model, and its intrinsic thermodynamic characteristics were determined quantitatively. Besides effective photothermal treatment and two-photon luminescence imaging, the near- and mid-IR-absorbing gold nanocrosses may also find applications in IR sensing, thermal imaging, telecommunications, and the like.


Journal of the American Chemical Society | 2010

Quantum Dot Capped Magnetite Nanorings as High Performance Nanoprobe for Multiphoton Fluorescence and Magnetic Resonance Imaging

H. M. Fan; Malini Olivo; Borys Shuter; Jiabao Yi; Ramaswamy Bhuvaneswari; Hui Ru Tan; Gui-Chuan Xing; Cheng-Teng Ng; Lei Liu; Sasidharan Swarnalatha Lucky; Boon-Huat Bay; Jun Ding

In the present study, quantum dot (QD) capped magnetite nanorings (NRs) with a high luminescence and magnetic vortex core have been successfully developed as a new class of magnetic-fluorescent nanoprobe. Through electrostatic interaction, cationic polyethylenimine (PEI) capped QD have been firmly graft into negatively charged magnetite NRs modified with citric acid on the surface. The obtained biocompatible multicolor QD capped magnetite NRs exhibit a much stronger magnetic resonance (MR) T2* effect where the r2* relaxivity and r2*/r1 ratio are 4 times and 110 times respectively larger than those of a commercial superparamagnetic iron oxide. The multiphoton fluorescence imaging and cell uptake of QD capped magnetite NRs are also demonstrated using MGH bladder cancer cells. In particular, these QD capped magnetite NRs can escape from endosomes and be released into the cytoplasm. The obtained results from these exploratory experiments suggest that the cell-penetrating QD capped magnetite NRs could be an excellent dual-modality nanoprobe for intracellular imaging and therapeutic applications. This work has shown great potential of the magnetic vortex core based multifunctional nanoparticle as a high performance nanoprobe for biomedical applications.


Nature Communications | 2014

One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance

Srikanth Pedireddy; Hiang Kwee Lee; Weng Weei Tjiu; In Yee Phang; Hui Ru Tan; Shu Quan Chua; Cedric Troadec; Xing Yi Ling

Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.


ACS Nano | 2010

Thiol-Capped ZnO Nanowire/Nanotube Arrays with Tunable Magnetic Properties at Room Temperature

Suzi Deng; H. M. Fan; Miao Wang; Minrui Zheng; Jiabao Yi; Rong-Qin Wu; Hui Ru Tan; Chorng Haur Sow; Jun Ding; Yuan Ping Feng; Kian Ping Loh

The present study reports room-temperature ferromagnetic behaviors in three-dimensional (3D)-aligned thiol-capped single-crystalline ZnO nanowire (NW) and nanotube (NT) arrays as well as polycrystalline ZnO NT arrays. Besides the observation of height-dependent saturation magnetization, a much higher M(s) of 166 microemu cm(-2) has been found in NTs compared to NWs (36 microemu cm(-2)) due to larger surface area in ZnO NTs, indicating morphology-dependent magnetic properties in ZnO NW/NT systems. Density functional calculations have revealed that the origin of ferromagnetism is mainly attributed to spin-polarized 3p electrons in S sites and, therefore, has a strong correlation with Zn-S bond anisotropy. The preferential magnetization direction of both single-crystalline NTs and NWs lies perpendicular to the tube/wire axis due to the aligned high anisotropy orientation of the Zn-S bonds on the lateral (100) face of ZnO NWs and NTs. Polycrystalline ZnO NTs, however, exhibit a preferential magnetization direction parallel to the tube axis which is ascribed to shape anisotropy dominating the magnetic response. Our results demonstrate the interplay of morphology, dimensions, and crystallinity on spin alignment and magnetic anisotropy in a 3D semiconductor nanosystem with interfacial magnetism.


ACS Applied Materials & Interfaces | 2013

NIR Schottky Photodetectors Based on Individual Single-Crystalline GeSe Nanosheet

Bablu Mukherjee; Yongqing Cai; Hui Ru Tan; Yuan Ping Feng; Eng Soon Tok; Chorng Haur Sow

We have synthesized high-quality, micrometer-sized, single-crystal GeSe nanosheets using vapor transport and deposition techniques. Photoresponse is investigated based on mechanically exfoliated GeSe nanosheet combined with Au contacts under a global laser irradiation scheme. The nonlinearship, asymmetric, and unsaturated characteristics of the I-V curves reveal that two uneven back-to-back Schottky contacts are formed. First-principles calculations indicate that the occurrence of defects-induced in-gap defective states, which are responsible for the slow decay of the current in the OFF state and for the weak light intensity dependence of photocurrent. The Schottky photodetector exhibits a marked photoresponse to NIR light illumination (maximum photoconductive gain ∼5.3 × 10(2) % at 4 V) at a wavelength of 808 nm. The significant photoresponse and good responsitivity (∼3.5 A W(-1)) suggests its potential applications as photodetectors.


ACS Applied Materials & Interfaces | 2016

Nanocrystal engineering of sputter grown CuO photocathode for visible light driven electrochemical water splitting

Saeid Masudy-Panah; Roozbeh Siavash Moakhar; Chin Sheng Chua; Hui Ru Tan; Ten It Wong; D. Z. Chi; Goutam Kumar Dalapati

Cupric oxide (CuO) thin film was sputtered onto fluorine-doped tin oxide (FTO) coated glass substrate and incorporated into a photoelectrochemical (PEC) cell as a photocathode. Through in situ nanocrystal engineering, sputtered CuO film shows an improvement in its stability and photocurrent generation capability. For the same CuO film thickness (150 nm), films deposited at a sputtering power of 300 W exhibit a photocurrent of ∼0.92 mAcm(-2) (0 V vs RHE), which is significantly higher than those deposited at 30 W (∼0.58 mAcm(-2)). By increasing the film thickness to 500 nm, the photocurrent is further enhanced to 2.5 mAcm(-2), which represents a photocurrent conversion efficiency of 3.1%. Systematic characterization using Raman, XRD, and HR-TEM reveals that the high sputtering power results in an improvement in CuO film crystallinity, which enhances its charge transport property and, hence, its photocurrent generation capabilities.


Journal of Applied Physics | 2014

Reduction of Cu-rich interfacial layer and improvement of bulk CuO property through two-step sputtering for p-CuO/n-Si heterojunction solar cell

Saeid Masudy-Panah; Goutam Kumar Dalapati; K. Radhakrishnan; Avishek Kumar; Hui Ru Tan

Copper-rich interfacial-layer (Cu-rich IL) is formed during sputter deposition of cupric oxide (CuO) layer on silicon (Si). It has significant impact on the performance of p-CuO/n-Si heterojunction solar cells. In this report, CuO films deposited on Si at different RF-power levels using single and two-step RF-sputtering techniques and p-CuO/n-Si heterojunction solar cells have been investigated. Systematic characterization using XPS, AFM, XRD, Raman, and HR-TEM reveal that two-step RF-sputtering technique offers better crystal quality CuO film with thinner Cu-rich IL layer. Photovoltaic (PV) properties with an open-circuit voltage (Voc) of 421 mV, short circuit current (Jsc) of 4.5 mA/cm2, and a photocurrent of 8.3 mA/cm2 have been achieved for the cells prepared using two-step sputtering method, which are significantly higher than that for the solar cells fabricated using a single-step sputtering. The PV properties were further improved by depositing CuO films at higher working pressure with nitrogen dop...


Nano Letters | 2016

Fluorescence Concentric Triangles: A Case of Chemical Heterogeneity in WS2 Atomic Monolayer

Hongwei Liu; Junpeng Lu; Kenneth Ho; Zhenliang Hu; Zhiya Dang; Alexandra Carvalho; Hui Ru Tan; Eng Soon Tok; Chorng Haur Sow

We report a novel optical property in WS2 monolayer. The monolayer naturally exhibits beautiful in-plane periodical and lateral homojunctions by way of alternate dark and bright band in the fluorescence images of these monolayers. The interface between different fluorescence species within the sample is distinct and sharp. This gives rise to intriguing concentric triangular fluorescence patterns in the monolayer. The novel optical property of this special WS2 monolayer is facilitated by chemical heterogeneity. The photoluminescence of the bright band is dominated by emissions from trion and biexciton while the emission from defect-bound exciton dominates the photoluminescence at the dark band. The discovery of such concentric fluorescence patterns represents a potentially new form of optoelectronic or photonic functionality.


ACS Applied Materials & Interfaces | 2014

Synthesis and phase evolutions in layered structure of Ga2S3 semiconductor thin films on epiready GaAs (111) substrates.

H. F. Liu; K. K. Ansah Antwi; N. L. Yakovlev; Hui Ru Tan; L. T. Ong; S. J. Chua; D. Z. Chi

We report on synthesis and properties of p-type Ga2S3 semiconductor thin films that were prepared by sulfurizing epiready n-type GaAs (111) surface at elevated temperatures. Comparisons of structural and optical properties among the thin films, peeling-off resulted microtubes, and the remains after peeling-off give a clear clue to the crystal growth and phase evolutions of Ga2S3. Three layers of Ga2S3 are clearly identified in the thin films. They are layer i, cubic Ga2S3 epitaxially grown on the GaAs (111) substrate; layer ii, polycrystalline cubic Ga2S3 on top of layer-i; and layer iii, monoclinic and/or hexagonal Ga2S3 on top of layer ii. The onset of peeling-off occurred in layer i and/or at the interface between layer i and ii. Both the phase evolutions and the location of peeling-off are associated with a Ga out diffusion growth mechanism. Absorption spectroscopy revealed a direct bandgap of 3.0 eV, whereas photoluminescence spectra showed defects (excited Ga vacancies) related red (1.62 eV) and green (2.24 eV) emissions of the Ga2S3 films; both are qualitatively consistent with those reported values obtained at lower sample temperatures from Ga2S3 single crystals. These results, together with a large on/off current ratio (i.e., ∼14 at a bias of 4.0 V) of the resultant hetero p-Ga2S3/n-GaAs junction under a blue laser (405 nm, 3.0 mW) illumination, shed light on consequent integrations of Ga2S3- and GaAs-based optoelectronic devices, e.g., high-power laser radiation sensors.

Collaboration


Dive into the Hui Ru Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eng Soon Tok

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chorng Haur Sow

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Eng Fong Chor

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suzi Deng

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge