Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huifen Chen is active.

Publication


Featured researches published by Huifen Chen.


Cell Death & Differentiation | 2008

Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress.

Ullman E; Fan Y; Stawowczyk M; Huifen Chen; Zhenyu Yue; Wei Xing Zong

Taken together, data obtained with kinase inhibitors and quantitative immunofluorescence analyses support strongly the idea that early mouse embryos inherit fully Ser472/ Thr308-phosphorylated AKT from oogenesis and that initial embryo cleavages are independent on growth factors, making PI3K and PDK1 activities dispensable. This conclusion is in agreement with previous observations that mouse preimplantation embryo development requires PI3K activity from the 8/16-cell stage. If TCL1 is not relevant to AKT phosphorylation in one-cell and two-cell embryos, is this factor needed for the phosphorylated AKT transfer to nucleus? We have addressed this issue by determining the intracellular distribution of Ser473/ Thr308-phosphorylated AKT in two-cell embryos that were genetically deficient in TCL1. Phosphorylated AKT had a striking cortical localization and was lacking in blastomere nuclei (Figure 1e), pinpointing the cell membrane as an obligatory step among the intracellular movements of phosphorylated AKT. In fact, it is commonly accepted that TCL1 oligomerizes with AKT at the level of cell membrane and that the TCL1–AKT complex is then transferred to nucleus. In conclusion, early mouse embryos display a physiological dissociation between the TCL1 functions of AKT phosphorylation and phosphorylated AKT transfer to nucleus, pinpointing the latter function as the essential one for the AKT-mediated promotion of cell proliferation. In addition, the present finding that TCL1 enters one-cell embryo pronuclei, while phosphorylated AKT does not, suggests that TCL1 also plays an AKTindependent role(s) at the beginning of embryo development. In light of the recent finding that TCL1 binds the PNPase exoribonuclease, an enzyme that specifically degrades polyAþ RNAs, it is tempting to hypothesize that this factor is also relevant for the degradation of maternally derived messages. Acknowledgements. We thank Dr Domenico Grillo for help in quantitative immunofluorescence determinations and Dr Adriana Bosco for genotyping Tcl1 / mice. This work was supported by grants from Istituto Pasteur — Fondazione Cenci Bolognetti to FM and Associazione Italiana Ricerca sul Cancro and Ministero della Salute to GR.


Nature | 2013

Mechanism of MEK inhibition determines efficacy in mutant KRAS- versus BRAF-driven cancers

Georgia Hatzivassiliou; Jacob R. Haling; Huifen Chen; Kyung Song; Steve Price; Robert Heald; Joanne Frances Mary Hewitt; Mark Zak; Ariana Peck; Christine Orr; Mark Merchant; Klaus P. Hoeflich; Jocelyn Chan; Shiuh-Ming Luoh; Daniel J. Anderson; Mary J. C. Ludlam; Christian Wiesmann; Mark Ultsch; Lori Friedman; Shiva Malek; Marcia Belvin

KRAS and BRAF activating mutations drive tumorigenesis through constitutive activation of the MAPK pathway. As these tumours represent an area of high unmet medical need, multiple allosteric MEK inhibitors, which inhibit MAPK signalling in both genotypes, are being tested in clinical trials. Impressive single-agent activity in BRAF-mutant melanoma has been observed; however, efficacy has been far less robust in KRAS-mutant disease. Here we show that, owing to distinct mechanisms regulating MEK activation in KRAS- versus BRAF-driven tumours, different mechanisms of inhibition are required for optimal antitumour activity in each genotype. Structural and functional analysis illustrates that MEK inhibitors with superior efficacy in KRAS-driven tumours (GDC-0623 and G-573, the former currently in phase I clinical trials) form a strong hydrogen-bond interaction with S212 in MEK that is critical for blocking MEK feedback phosphorylation by wild-type RAF. Conversely, potent inhibition of active, phosphorylated MEK is required for strong inhibition of the MAPK pathway in BRAF-mutant tumours, resulting in superior efficacy in this genotype with GDC-0973 (also known as cobimetinib), a MEK inhibitor currently in phase III clinical trials. Our study highlights that differences in the activation state of MEK in KRAS-mutant tumours versus BRAF-mutant tumours can be exploited through the design of inhibitors that uniquely target these distinct activation states of MEK. These inhibitors are currently being evaluated in clinical trials to determine whether improvements in therapeutic index within KRAS versus BRAF preclinical models translate to improved clinical responses in patients.


Science Translational Medicine | 2012

Ser1292 Autophosphorylation Is an Indicator of LRRK2 Kinase Activity and Contributes to the Cellular Effects of PD Mutations

Zejuan Sheng; Shuo Zhang; Daisy Bustos; Tracy Kleinheinz; Claire E. Le Pichon; Sara L. Dominguez; Hilda Solanoy; Jason Drummond; Xiaolin Zhang; Xiao Ding; Fang Cai; Qinghua Song; Xianting Li; Zhenyu Yue; Marcel van der Brug; Daniel J. Burdick; Janet Gunzner-Toste; Huifen Chen; Xingrong Liu; Anthony A. Estrada; Zachary Kevin Sweeney; Kimberly Scearce-Levie; John Moffat; Donald S. Kirkpatrick; Haitao Zhu

LRRK2 autophosphorylation on Ser1292 may be a useful indicator of kinase activity, providing a readout for screening candidate LRRK2 inhibitors. LRRK2 Inhibitor Heralds a Happier Song Genetic polymorphisms in the leucine-rich repeat kinase 2 (LRRK2) are the most common causes of familial Parkinson’s disease (PD) and are also linked to idiopathic PD. The most prevalent LRRK2 PD mutation G2019S imbues the kinase with a gain of function, suggesting that blocking LRRK2 activity may be a therapeutic strategy for reversing the pathogenic effects of LRRK2 mutations in PD. However, the mechanistic link between LRRK2 kinase activity and the cellular effects of PD mutations remains elusive, and there has been no reliable way to monitor LRRK2 kinase activity in vivo. Using quantitative mass spectrometry and subsequent phospho-specific antibody approaches, Sheng et al. now report that LRRK2 phosphorylates itself on Ser1292 in vitro and in vivo (Ser1292 autophosphorylation). Five of the six confirmed familial LRRK2 PD mutations increased Ser1292 autophosphorylation when transiently expressed in heterologous cells, suggesting increased Ser1292 autophosphorylation as a common feature of LRRK2 PD mutations. Elimination of the Ser1292 autophosphorylation site abrogated the defects on neurite outgrowth caused by LRRK2 PD mutations in cultured rat embryonic neurons. Using Ser1292 autophosphorylation as the readout of kinase activity, Sheng et al. developed assays to monitor LRRK2 kinase activity in cultured cells and rodents. These assays were used to profile the potencies of hundreds of LRRK2 kinase inhibitors derived from high-throughput compound screening. A potent and selective compound that effectively inhibited LRRK2 kinase activity in mouse brains and reversed cellular effects of LRRK2 PD mutations in cultured primary neurons was identified. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson’s disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2 autophosphorylation on Ser1292 occurs in vivo and is enhanced by several familial PD mutations including N1437H, R1441G/C, G2019S, and I2020T. Combining two PD mutations together further increases Ser1292 autophosphorylation. Mutation of Ser1292 to alanine (S1292A) ameliorates the effects of LRRK2 PD mutations on neurite outgrowth in cultured rat embryonic primary neurons. Using cell-based and pharmacodynamic assays with phosphorylated Ser1292 as the readout, we developed a brain-penetrating LRRK2 kinase inhibitor that blocks Ser1292 autophosphorylation in vivo and attenuates the cellular consequences of LRRK2 PD mutations in vitro. These data suggest that Ser1292 autophosphorylation may be a useful indicator of LRRK2 kinase activity in vivo and may contribute to the cellular effects of certain PD mutations.


Molecular Cancer Therapeutics | 2012

ERK Inhibition Overcomes Acquired Resistance to MEK Inhibitors

Georgia Hatzivassiliou; Bonnie Liu; Carol O'Brien; Jill M. Spoerke; Klaus P. Hoeflich; Peter M. Haverty; Robert Soriano; William F. Forrest; Sherry Heldens; Huifen Chen; Karen Toy; Connie Ha; Wei Zhou; Kyung Song; Lori Friedman; Lukas C. Amler; Garret M. Hampton; John Moffat; Marcia Belvin; Mark R. Lackner

The RAS/RAF/MEK pathway is activated in more than 30% of human cancers, most commonly via mutation in the K-ras oncogene and also via mutations in BRAF. Several allosteric mitogen-activated protein/extracellular signal–regulated kinase (MEK) inhibitors, aimed at treating tumors with RAS/RAF pathway alterations, are in clinical development. However, acquired resistance to these inhibitors has been documented both in preclinical and clinical samples. To identify strategies to overcome this resistance, we have derived three independent MEK inhibitor–resistant cell lines. Resistance to allosteric MEK inhibitors in these cell lines was consistently linked to acquired mutations in the allosteric binding pocket of MEK. In one cell line, concurrent amplification of mutant K-ras was observed in conjunction with MEK allosteric pocket mutations. Clonal analysis showed that both resistance mechanisms occur in the same cell and contribute to enhanced resistance. Importantly, in all cases the MEK-resistant cell lines retained their addiction to the mitogen-activated protein kinase (MAPK) pathway, as evidenced by their sensitivity to a selective inhibitor of the ERK1/2 kinases. These data suggest that tumors with acquired MEK inhibitor resistance remain dependent on the MAPK pathway and are therefore sensitive to inhibitors that act downstream of the mutated MEK target. Importantly, we show that dual inhibition of MEK and ERK by small molecule inhibitors was synergistic and acted to both inhibit the emergence of resistance, as well as to overcome acquired resistance to MEK inhibitors. Therefore, our data provide a rationale for cotargeting multiple nodes within the MAPK signaling cascade in K-ras mutant tumors to maximize therapeutic benefit for patients. Mol Cancer Ther; 11(5); 1143–54. ©2012 AACR.


Journal of Medicinal Chemistry | 2012

Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors.

Anthony A. Estrada; Xingrong Liu; Charles Baker-Glenn; Alan Beresford; Daniel J. Burdick; Mark Stuart Chambers; Bryan K. Chan; Huifen Chen; Xiao Ding; Antonio G. DiPasquale; Sara L. Dominguez; Jennafer Dotson; Jason Drummond; Michael Flagella; Sean P. Flynn; Reina N. Fuji; Andrew Gill; Janet Gunzner-Toste; Seth F. Harris; Timothy P. Heffron; Tracy Kleinheinz; Donna W. Lee; Claire E. Le Pichon; Joseph P. Lyssikatos; Andrew D. Medhurst; John Moffat; Susmith Mukund; Kevin Nash; Kimberly Scearce-Levie; Zejuan Sheng

There is a high demand for potent, selective, and brain-penetrant small molecule inhibitors of leucine-rich repeat kinase 2 (LRRK2) to test whether inhibition of LRRK2 kinase activity is a potentially viable treatment option for Parkinsons disease patients. Herein we disclose the use of property and structure-based drug design for the optimization of highly ligand efficient aminopyrimidine lead compounds. High throughput in vivo rodent cassette pharmacokinetic studies enabled rapid validation of in vitro-in vivo correlations. Guided by this data, optimal design parameters were established. Effective incorporation of these guidelines into our molecular design process resulted in the discovery of small molecule inhibitors such as GNE-7915 (18) and 19, which possess an ideal balance of LRRK2 cellular potency, broad kinase selectivity, metabolic stability, and brain penetration across multiple species. Advancement of GNE-7915 into rodent and higher species toxicity studies enabled risk assessment for early development.


Journal of Medicinal Chemistry | 2012

Discovery of Selective LRRK2 Inhibitors Guided by Computational Analysis and Molecular Modeling

Huifen Chen; Bryan K. Chan; Jason Drummond; Anthony A. Estrada; Janet Gunzner-Toste; Xingrong Liu; Yichin Liu; John Moffat; Daniel Shore; Zachary Kevin Sweeney; Thuy Tran; Shumei Wang; Guiling Zhao; Haitao Zhu; Daniel J. Burdick

Mutations in the genetic sequence of leucine-rich repeat kinase 2 (LRRK2) have been linked to increased LRRK2 activity and risk for the development of Parkinsons disease (PD). Potent and selective small molecules capable of inhibiting the kinase activity of LRRK2 will be important tools for establishing a link between the kinase activity of LRRK2 and PD. In the absence of LRRK2 kinase domain crystal structures, a LRRK2 homology model was developed that provided robust guidance in the hit-to-lead optimization of small molecule LRRK2 inhibitors. Through a combination of molecular modeling, sequence analysis, and matched molecular pair (MMP) activity cliff analysis, a potent and selective lead inhibitor was discovered. The selectivity of this compound could be understood using the LRRK2 homology model, and application of this learning to a series of 2,4-diaminopyrimidine inhibitors in a scaffold hopping exercise led to the identification of highly potent and selective LRRK2 inhibitors that were also brain penetrable.


Journal of Medicinal Chemistry | 2014

Discovery of Highly Potent, Selective, and Brain-Penetrant Aminopyrazole Leucine-Rich Repeat Kinase 2 (LRRK2) Small Molecule Inhibitors

Anthony A. Estrada; Bryan K. Chan; Charles Baker-Glenn; Alan Beresford; Daniel J. Burdick; Mark Stuart Chambers; Huifen Chen; Sara L. Dominguez; Jennafer Dotson; Jason Drummond; Michael Flagella; Reina N. Fuji; Andrew Gill; Jason S. Halladay; Seth F. Harris; Timothy P. Heffron; Tracy Kleinheinz; Donna W. Lee; Claire E. Le Pichon; Xingrong Liu; Joseph P. Lyssikatos; Andrew D. Medhurst; John Moffat; Kevin Nash; Kimberly Scearce-Levie; Zejuan Sheng; Daniel Shore; Susan Wong; Shuo Zhang; Xiaolin Zhang

Leucine-rich repeat kinase 2 (LRRK2) has drawn significant interest in the neuroscience research community because it is one of the most compelling targets for a potential disease-modifying Parkinsons disease therapy. Herein, we disclose structurally diverse small molecule inhibitors suitable for assessing the implications of sustained in vivo LRRK2 inhibition. Using previously reported aminopyrazole 2 as a lead molecule, we were able to engineer structural modifications in the solvent-exposed region of the ATP-binding site that significantly improve human hepatocyte stability, rat free brain exposure, and CYP inhibition and induction liabilities. Disciplined application of established optimal CNS design parameters culminated in the rapid identification of GNE-0877 (11) and GNE-9605 (20) as highly potent and selective LRRK2 inhibitors. The demonstrated metabolic stability, brain penetration across multiple species, and selectivity of these inhibitors support their use in preclinical efficacy and safety studies.


Journal of Medicinal Chemistry | 2016

Discovery of (S)-1-(1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Inhibitor in Early Clinical Development.

James F. Blake; Michael Burkard; Jocelyn Chan; Huifen Chen; Kang-Jye Chou; Dolores Díaz; Danette Dudley; John J. Gaudino; Stephen E. Gould; Jonas Grina; Thomas Hunsaker; Lichuan Liu; Matthew Martinson; David Moreno; Lars Mueller; Christine Orr; Patricia Pacheco; Ann Qin; Kevin Rasor; Li Ren; Kirk Robarge; Sheerin Shahidi-Latham; Jeffrey Stults; Francis J. Sullivan; Weiru Wang; JianPing Yin; Aihe Zhou; Marcia Belvin; Mark Merchant; John Moffat

The extracellular signal-regulated kinases ERK1/2 represent an essential node within the RAS/RAF/MEK/ERK signaling cascade that is commonly activated by oncogenic mutations in BRAF or RAS or by upstream oncogenic signaling. While targeting upstream nodes with RAF and MEK inhibitors has proven effective clinically, resistance frequently develops through reactivation of the pathway. Simultaneous targeting of multiple nodes in the pathway, such as MEK and ERK, offers the prospect of enhanced efficacy as well as reduced potential for acquired resistance. Described herein is the discovery and characterization of GDC-0994 (22), an orally bioavailable small molecule inhibitor selective for ERK kinase activity.


Journal of Medicinal Chemistry | 2014

Discovery of Selective 4-Amino-pyridopyrimidine Inhibitors of MAP4K4 Using Fragment-Based Lead Identification and Optimization.

Terry D. Crawford; Chudi Ndubaku; Huifen Chen; Jason Boggs; Brandon J. Bravo; Kelly DeLaTorre; Anthony M. Giannetti; Stephen E. Gould; Seth F. Harris; Steven Magnuson; Erin McNamara; Lesley J. Murray; Jim Nonomiya; Amy Sambrone; Stephen Schmidt; Tanya Smyczek; Mark S. Stanley; Philip Vitorino; Lan Wang; Kristina West; Ping Wu; Weilan Ye

Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) is a serine/threonine kinase implicated in the regulation of many biological processes. A fragment-based lead discovery approach was used to generate potent and selective MAP4K4 inhibitors. The fragment hit pursued in this article had excellent ligand efficiency (LE), an important attribute for subsequent successful optimization into drug-like lead compounds. The optimization efforts eventually led us to focus on the pyridopyrimidine series, from which 6-(2-fluoropyridin-4-yl)pyrido[3,2-d]pyrimidin-4-amine (29) was identified. This compound had low nanomolar potency, excellent kinase selectivity, and good in vivo exposure, and demonstrated in vivo pharmacodynamic effects in a human tumor xenograft model.


Journal of Medicinal Chemistry | 2015

Discovery of highly potent, selective, and efficacious small molecule inhibitors of ERK1/2.

Li Ren; Jonas Grina; David Moreno; James F. Blake; John J. Gaudino; Rustam Ferdinand Garrey; Andrew T. Metcalf; Michael Burkard; Matthew Martinson; Kevin Rasor; Huifen Chen; Brian Dean; Stephen E. Gould; Patricia Pacheco; Sheerin Shahidi-Latham; Jianping Yin; Kristina West; Weiru Wang; John Moffat; Jacob B. Schwarz

Using structure-based design, a novel series of pyridone ERK1/2 inhibitors was developed. Optimization led to the identification of (S)-14k, a potent, selective, and orally bioavailable agent that inhibited tumor growth in mouse xenograft models. On the basis of its in vivo efficacy and preliminary safety profiles, (S)-14k was selected for further preclinical evaluation.

Collaboration


Dive into the Huifen Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Estrada

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge