Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maike Buchner is active.

Publication


Featured researches published by Maike Buchner.


Nature | 2012

Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling

Marcus Dühren-von Minden; Rudolf Übelhart; Dunja Schneider; Thomas Wossning; Martina P. Bach; Maike Buchner; Daniel Hofmann; Elena Surova; Marie Follo; Fabian Kohler; Hedda Wardemann; Katja Zirlik; Hendrik Veelken; Hassan Jumaa

B-cell antigen receptor (BCR) expression is an important feature of chronic lymphocytic leukaemia (CLL), one of the most prevalent B-cell neoplasias in Western countries. The presence of stereotyped and quasi-identical BCRs in different CLL patients suggests that recognition of specific antigens might drive CLL pathogenesis. Here we show that, in contrast to other B-cell neoplasias, CLL-derived BCRs induce antigen-independent cell-autonomous signalling, which is dependent on the heavy-chain complementarity-determining region (HCDR3) and an internal epitope of the BCR. Indeed, transferring the HCDR3 of a CLL-derived BCR provides autonomous signalling capacity to a non-autonomously active BCR, whereas mutations in the internal epitope abolish this capacity. Because BCR expression was required for the binding of secreted CLL-derived BCRs to target cells, and mutations in the internal epitope reduced this binding, our results indicate a new model for CLL pathogenesis, with cell-autonomous antigen-independent signalling as a crucial pathogenic mechanism.


Cancer Research | 2009

Spleen Tyrosine Kinase Is Overexpressed and Represents a Potential Therapeutic Target in Chronic Lymphocytic Leukemia

Maike Buchner; Simon Fuchs; Gabriele Prinz; Dietmar Pfeifer; Kilian Bartholomé; Meike Burger; Nina Chevalier; Laurent Vallat; Jens Timmer; John G. Gribben; Hassan Jumaa; Hendrik Veelken; Christine Dierks; Katja Zirlik

B-cell receptor signaling contributes to apoptosis resistance in chronic lymphocytic leukemia (CLL), limiting the efficacy of current therapeutic approaches. In this study, we investigated the expression of spleen tyrosine kinase (SYK), a key component of the B-cell receptor signaling pathway, in CLL and its role in apoptosis. Gene expression profiling identified enhanced expression of SYK and downstream pathways in CLL compared with healthy B cells. Immunoblotting showed increased expression and phosphorylation of SYK, PLCgamma(2), signal transducers and activators of transcription 3, and extracellular signal regulated kinase 1/2 in CLL compared with healthy B cells, suggesting enhanced activation of these mediators in CLL. SYK inhibitors reduced phosphorylation of SYK downstream targets and induced apoptosis in primary CLL cells. With respect to prognostic factors, SYK inhibitors exerted stronger cytotoxic effects in unmutated and ZAP70(+) cases. Cytotoxic effects of SYK inhibitors also associated with SYK protein expression, potentially predicting response to therapy. Combination of fludarabine with SYK Inhibitor II or R406 increased cytotoxicity compared with fludarabine therapy alone. We observed no stroma-contact-mediated drug resistance for SYK inhibitors as described for fludarabine treatment. CD40 ligation further enhanced efficacy of SYK inhibition. Our data provide mechanistic insight into the recently observed therapeutic effects of the SYK inhibitor R406 in CLL. Combination of SYK inhibitors with fludarabine might be a novel treatment option particularly for CLL patients with poor prognosis and should be further evaluated in clinical trials.


Nature | 2015

Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia.

Zhengshan Chen; Seyedmehdi Shojaee; Maike Buchner; Huimin Geng; Jae-Woong Lee; Lars Klemm; Björn Titz; Thomas G. Graeber; Eugene Park; Ying Xim Tan; Anne B. Satterthwaite; Elisabeth Paietta; Stephen P. Hunger; Cheryl L. Willman; Ari Melnick; Mignon L. Loh; Jae U. Jung; John E. Coligan; Silvia Bolland; Tak W. Mak; Andre Limnander; Hassan Jumaa; Michael Reth; Arthur Weiss; Clifford A. Lowell; Markus Müschen

B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In ∼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation—above a maximum threshold—will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR–ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2011

The Oral Spleen Tyrosine Kinase Inhibitor Fostamatinib Attenuates Inflammation and Atherogenesis in Low-Density Lipoprotein Receptor–Deficient Mice

Ingo Hilgendorf; Sara Eisele; Imke Remer; Jochen Schmitz; Katharina Zeschky; Christian Colberg; Peter Stachon; Dennis Wolf; Florian Willecke; Maike Buchner; Katja Zirlik; Alexandra Ortiz-Rodriguez; Andrey Lozhkin; Natalie Hoppe; Constantin von zur Muhlen; Axel zur Hausen; Christoph Bode; Andreas Zirlik

Objective— Spleen tyrosine kinase (SYK) has come into focus as a potential therapeutic target in chronic inflammatory diseases, such as rheumatoid arthritis and asthma, as well as in B-cell lymphomas. SYK has also been involved in the signaling of immunoreceptors, cytokine receptors, and integrins. We therefore hypothesized that inhibition of SYK attenuates the inflammatory process underlying atherosclerosis and reduces plaque development. Methods and Results— Low-density lipoprotein receptor–deficient mice consuming a high-cholesterol diet supplemented with 2 doses of the orally available SYK inhibitor fostamatinib for 16 weeks showed a dose-dependent reduction in atherosclerotic lesion size by up to 59±6% compared with the respective controls. Lesions of fostamatinib-treated animals contained fewer macrophages but more smooth muscle cells and collagen—characteristics associated with more stable plaques in humans. Mechanistically, fostamatinib attenuated adhesion and migration of inflammatory cells and limited macrophage survival. Furthermore, fostamatinib normalized high-cholesterol diet –induced monocytosis and inflammatory gene expression. Conclusion— We present the novel finding that the SYK inhibitor fostamatinib attenuates atherogenesis in mice. Our data identify SYK inhibition as a potentially fruitful antiinflammatory therapeutic strategy in atherosclerosis.


Nature Medicine | 2016

PTEN opposes negative selection and enables oncogenic transformation of pre-B cells

Seyedmehdi Shojaee; Lai N. Chan; Maike Buchner; Valeria Cazzaniga; Kadriye Nehir Cosgun; Huimin Geng; Yi Hua Qiu; Marcus Dühren-von Minden; Thomas Ernst; Andreas Hochhaus; Giovanni Cazzaniga; Ari Melnick; Steven M. Kornblau; Thomas G. Graeber; Hong Wu; Hassan Jumaa; Markus Müschen

Phosphatase and tensin homolog (PTEN) is a negative regulator of the phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) signaling pathway and a potent tumor suppressor in many types of cancer. To test a tumor suppressive role for PTEN in pre-B acute lymphoblastic leukemia (ALL), we induced Cre-mediated deletion of Pten in mouse models of pre-B ALL. In contrast to its role as a tumor suppressor in other cancers, loss of one or both alleles of Pten caused rapid cell death of pre-B ALL cells and was sufficient to clear transplant recipient mice of leukemia. Small-molecule inhibition of PTEN in human pre-B ALL cells resulted in hyperactivation of AKT, activation of the p53 tumor suppressor cell cycle checkpoint and cell death. Loss of PTEN function in pre-B ALL cells was functionally equivalent to acute activation of autoreactive pre–B cell receptor signaling, which engaged a deletional checkpoint for the removal of autoreactive B cells. We propose that targeted inhibition of PTEN and hyperactivation of AKT triggers a checkpoint for the elimination of autoreactive B cells and represents a new strategy to overcome drug resistance in human ALL.


Molecular Cancer | 2010

Role of the atypical chemoattractant receptor CRAM in regulating CCL19 induced CCR7 responses in B-cell chronic lymphocytic leukemia

Julie Catusse; Marion Leick; Mareike Groch; David J Clark; Maike Buchner; Katja Zirlik; Meike Burger

BackgroundThe non-signalling chemokine receptors, including receptors DARC, D6 and CCX-CKR, have recently been shown to be involved in chemokine clearance and activity regulation. The human chemokine receptor CRAM (also known as HCR or CCRL2) is the most recently identified member of this atypical group. CRAM is expressed on B cells in a maturation-stage dependent manner and absent on T cells. We have recently shown that it competitively binds CCL19. CCL19 and its signalling receptor CCR7 are critical components involved in cell recruitment to secondary lymphoid organs and in maturation. B cell Chronic Lymphocytic Leukemia (B-CLL) is a low-grade lymphoma characterized by proliferative centres (or pseudofollicles). Proliferative centres develop due to abnormal cellular localisation and they are involved in the development of malignant cells. CCR7 is highly expressed on B cells from CLL patients and mediates migration towards its ligands CCL19 and CCL21, while CRAM expression and potential interferences with CCR7 are yet to be characterized.ResultsIn this study, we show that B cells from patients with B-CLL present highly variable degrees of CRAM expression in contrast to more consistently high levels of CCR7. We investigated the hypothesis that, similar to the atypical receptor DARC, CRAM can modulate chemokine availability and/or efficacy, resulting in the regulation of cellular activation. We found that a high level of CRAM expression was detrimental to efficient chemotaxis with CCL19. MAP-kinase phosphorylation and intracellular calcium release induced by CCL19 were also altered by CRAM expression. In addition, we demonstrate that CRAM-induced regulation of CCL19 signalling is maintained over time.ConclusionsWe postulate that CRAM is a factor involved in the fine tuning/control of CCR7/CCL19 mediated responses. This regulation could be critical to the pivotal role of CCL19 induced formation of proliferation centres supporting the T/B cells encounter as well as disease progression in B-CLL.


British Journal of Haematology | 2010

The microenvironment differentially impairs passive and active immunotherapy in chronic lymphocytic leukaemia - CXCR4 antagonists as potential adjuvants for monoclonal antibodies.

Maike Buchner; Philipp Brantner; Natalie Stickel; Gabriele Prinz; Meike Burger; Constance Bär; Christine Dierks; Dietmar Pfeifer; Ariane Ott; Roland Mertelsmann; John G. Gribben; Hendrik Veelken; Katja Zirlik

Direct contact with stromal cells protects chronic lymphocytic leukaemia (CLL) B cells from chemotherapy‐induced apoptosis in vitro. Blockade of CXCR4 signalling antagonizes stroma‐mediated interactions and restores CLL chemosensitivity. In vivo, administration of CXCR4 antagonists effectively mobilizes haematopoietic progenitor cells. Therefore, combinations of CXCR4 blockade and cytoreductive treatment with selective activity on CLL cells may avoid potential haematotoxicity. Hence, we tested CXCR4 antagonists in the context of passive and active immunotherapeutic approaches. We evaluated how efficiently rituximab, alemtuzumab and cytotoxic T cells killed CLL cells cocultured with stromal cells in the presence and absence of a CXCR4 antagonist. Stromal cell contact attenuated rituximab‐ and alemtuzumab‐induced complement‐dependent cytotoxicity of CLL cells. Addition of CXCR4 antagonists abrogated the protective effect of stroma. In contrast, stromal cells did not impair antibody‐dependent cell‐mediated cytotoxicity and cytotoxicity induced by activated T cells. Destruction of microtubules in CLL target cells restored the protective effect of stroma coculture for CLL cells during Natural Killer cell attack by preventing mitochondrial relocalization towards the immunological synapse. Our data identify the combination of CXCR4 antagonists with passive ‐ but not active ‐ immunotherapy as a promising potential treatment concept in CLL.


Immunological Reviews | 2015

Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia.

Maike Buchner; Srividya Swaminathan; Zhengshan Chen; Markus Müschen

Pre‐B cells within the bone marrow represent the normal counterpart for most acute lymphoblastic leukemia (ALL). During normal early B‐cell development, survival and proliferation signals are dominated by cytokines, particularly interleukin‐7 (IL‐7) for murine developing B cells. With expression of a functional pre‐B‐cell receptor (BCR), cytokine signaling is attenuated and the tonic/autonomous pre‐BCR signaling pathway provides proliferation as well as differentiation signals. In this review, we first describe checkpoint mechanisms during normal B‐cell development and then discuss how genetic lesions in these pathways function as oncogenic mimicries and allow transformed pre‐B cells to bypass checkpoint control. We focus on cytokine receptor signaling that is mimicked by activating lesions in receptor subunits or downstream mediators as well as aberrant activation of non‐B lymphoid cytokine receptors. Furthermore, we describe the molecular switch from cytokine receptor to pre‐BCR signaling, how this pathway is of particular importance for certain ALL subtypes, and how pre‐BCR signaling is engaged by genetic lesions, such as BCR‐ABL1. We discuss the transcriptional control mechanisms downstream of both cytokine‐ and pre‐BCR signaling and how normal checkpoint control mechanisms are circumvented in pre‐B ALL. Finally, we highlight new therapeutic concepts for targeted inhibition of oncogenic cytokine or pre‐BCR signaling pathways.


Nature Communications | 2015

Identification of FOXM1 as a therapeutic target in B-cell lineage acute lymphoblastic leukaemia

Maike Buchner; Eugene Park; Huimin Geng; Lars Klemm; Johanna Flach; Emmanuelle Passegué; Hilde Schjerven; Ari Melnick; Elisabeth Paietta; Dragana Kopanja; Pradip Raychaudhuri; Markus Müschen

Despite recent advances in the cure rate of acute lymphoblastic leukaemia (ALL), the prognosis for patients with relapsed ALL remains poor. Here we identify FOXM1 as a candidate responsible for an aggressive clinical course. We show that FOXM1 levels peak at the pre-B-cell receptor checkpoint but are dispensable for normal B-cell development. Compared with normal B-cell populations, FOXM1 levels are 2- to 60-fold higher in ALL cells and are predictive of poor outcome in ALL patients. FOXM1 is negatively regulated by FOXO3A, supports cell survival, drug resistance, colony formation and proliferation in vitro, and promotes leukemogenesis in vivo. Two complementary approaches of pharmacological FOXM1 inhibition—(i) FOXM1 transcriptional inactivation using the thiazole antibiotic thiostrepton and (ii) an FOXM1 inhibiting ARF-derived peptide—recapitulate the findings of genetic FOXM1 deletion. Taken together, our data identify FOXM1 as a novel therapeutic target, and demonstrate feasibility of FOXM1 inhibition in ALL.


PLOS ONE | 2016

Spleen Tyrosine Kinase Is Involved in the CD38 Signal Transduction Pathway in Chronic Lymphocytic Leukemia

Marco Benkisser-Petersen; Maike Buchner; Arlette Dörffel; Marcus Dühren-von-Minden; Rainer Claus; Kathrin Kläsener; Kerstin Leberecht; Meike Burger; Christine Dierks; Hassan Jumaa; Fabio Malavasi; Michael Reth; Hendrik Veelken; Justus Duyster; Katja Zirlik

The survival and proliferation of CLL cells depends on microenvironmental contacts in lymphoid organs. CD38 is a cell surface receptor that plays an important role in survival and proliferation signaling in CLL. In this study we demonstrate SYKs direct involvement in the CD38 signaling pathway in primary CLL samples. CD38 stimulation of CLL cells revealed SYK activation. SYK downstream target AKT was subsequently induced and MCL-1 expression was increased. Concomitant inhibition of SYK by the SYK inhibitor R406 resulted in reduced activation of AKT and prevented upregulation of MCL-1. Moreover, short-term CD38 stimulation enhanced BCR-signaling, as indicated by increased ERK phosphorylation. CXCL12-dependent migration was increased after CD38 stimulation. Treating CLL cells with R406 inhibited CD38-mediated migration. In addition, we observed marked downregulation of CD38 expression for CLL cells treated with R406 compared to vehicle control. Finally, we observed a clear correlation between CD38 expression on CLL cells and SYK-inhibitor efficacy. In conclusion, our study provides deeper mechanistic insight into the effect of SYK inhibition in CLL.

Collaboration


Dive into the Maike Buchner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huimin Geng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Klemm

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja Zirlik

University Medical Center Freiburg

View shared research outputs
Top Co-Authors

Avatar

Hassan Jumaa

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene Park

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge