Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lars Klemm is active.

Publication


Featured researches published by Lars Klemm.


Nature | 2011

BCL6 enables Ph + acute lymphoblastic leukaemia cells to survive BCR–ABL1 kinase inhibition

Cihangir Duy; Christian Hurtz; Seyedmehdi Shojaee; Leandro Cerchietti; Huimin Geng; Srividya Swaminathan; Lars Klemm; Soo-Mi Kweon; Rahul Nahar; Melanie Braig; Eugene Park; Yong-Mi Kim; Wolf-Karsten Hofmann; Sebastian Herzog; Hassan Jumaa; H. Phillip Koeffler; J. Jessica Yu; Nora Heisterkamp; Thomas G. Graeber; Hong L Wu; B. Hilda Ye; Ari Melnick; Markus Müschen

Tyrosine kinase inhibitors (TKIs) are widely used to treat patients with leukaemia driven by BCR–ABL1 (ref. 1) and other oncogenic tyrosine kinases. Recent efforts have focused on developing more potent TKIs that also inhibit mutant tyrosine kinases. However, even effective TKIs typically fail to eradicate leukaemia-initiating cells (LICs), which often cause recurrence of leukaemia after initially successful treatment. Here we report the discovery of a novel mechanism of drug resistance, which is based on protective feedback signalling of leukaemia cells in response to treatment with TKI. We identify BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukaemia-initiating subclones.


Cancer Cell | 2009

The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia.

Lars Klemm; Cihangir Duy; Ilaria Iacobucci; Stefan Kuchen; Gregor von Levetzow; Niklas Feldhahn; Nadine Henke; Zhiyu Li; Thomas K. Hoffmann; Yong Mi Kim; Wolf-Karsten Hofmann; Hassan Jumaa; John Groffen; Nora Heisterkamp; Giovanni Martinelli; Michael R. Lieber; Rafael Casellas; Markus Müschen

Chronic myeloid leukemia (CML) is induced by BCR-ABL1 and can be effectively treated for many years with Imatinib until leukemia cells acquire drug resistance through BCR-ABL1 mutations and progress into fatal B lymphoid blast crisis (LBC). Despite its clinical significance, the mechanism of progression into LBC is unknown. Here, we show that LBC but not CML cells express the B cell-specific mutator enzyme AID. We demonstrate that AID expression in CML cells promotes overall genetic instability by hypermutation of tumor suppressor and DNA repair genes. Importantly, our data uncover a causative role of AID activity in the acquisition of BCR-ABL1 mutations leading to Imatinib resistance, thus providing a rationale for the rapid development of drug resistance and blast crisis progression.


Journal of Experimental Medicine | 2009

Pre–B cell receptor–mediated cell cycle arrest in Philadelphia chromosome–positive acute lymphoblastic leukemia requires IKAROS function

Daniel Trageser; Ilaria Iacobucci; Rahul Nahar; Cihangir Duy; Gregor von Levetzow; Lars Klemm; Eugene Park; Wolfgang Schuh; Tanja A. Gruber; Sebastian Herzog; Yong-Mi Kim; Wolf-Karsten Hofmann; Aihong Li; Clelia Tiziana Storlazzi; Hans-Martin Jäck; John Groffen; Giovanni Martinelli; Nora Heisterkamp; Hassan Jumaa; Markus Müschen

B cell lineage acute lymphoblastic leukemia (ALL) arises in virtually all cases from B cell precursors that are arrested at pre–B cell receptor–dependent stages. The Philadelphia chromosome–positive (Ph+) subtype of ALL accounts for 25–30% of cases of adult ALL, has the most unfavorable clinical outcome among all ALL subtypes and is defined by the oncogenic BCR-ABL1 kinase and deletions of the IKAROS gene in >80% of cases. Here, we demonstrate that the pre–B cell receptor functions as a tumor suppressor upstream of IKAROS through induction of cell cycle arrest in Ph+ ALL cells. Pre–B cell receptor–mediated cell cycle arrest in Ph+ ALL cells critically depends on IKAROS function, and is reversed by coexpression of the dominant-negative IKAROS splice variant IK6. IKAROS also promotes tumor suppression through cooperation with downstream molecules of the pre–B cell receptor signaling pathway, even if expression of the pre–B cell receptor itself is compromised. In this case, IKAROS redirects oncogenic BCR-ABL1 tyrosine kinase signaling from SRC kinase-activation to SLP65, which functions as a critical tumor suppressor downstream of the pre–B cell receptor. These findings provide a rationale for the surprisingly high frequency of IKAROS deletions in Ph+ ALL and identify IKAROS-mediated cell cycle exit as the endpoint of an emerging pathway of pre–B cell receptor–mediated tumor suppression.


Journal of Experimental Medicine | 2010

BCL6 is critical for the development of a diverse primary B cell repertoire

Cihangir Duy; J. Jessica Yu; Rahul Nahar; Srividya Swaminathan; Soo Mi Kweon; Jose M. Polo; Ester Valls; Lars Klemm; Seyedmehdi Shojaee; Leandro Cerchietti; Wolfgang Schuh; Hans-Martin Jäck; Christian Hurtz; Parham Ramezani-Rad; Sebastian Herzog; Hassan Jumaa; H. Phillip Koeffler; Ignacio Moreno de Alborán; Ari Melnick; B. Hilda Ye; Markus Müschen

BCL6 protects germinal center (GC) B cells against DNA damage–induced apoptosis during somatic hypermutation and class-switch recombination. Although expression of BCL6 was not found in early IL-7–dependent B cell precursors, we report that IL-7Rα–Stat5 signaling negatively regulates BCL6. Upon productive VH-DJH gene rearrangement and expression of a μ heavy chain, however, activation of pre–B cell receptor signaling strongly induces BCL6 expression, whereas IL-7Rα–Stat5 signaling is attenuated. At the transition from IL-7–dependent to –independent stages of B cell development, BCL6 is activated, reaches expression levels resembling those in GC B cells, and protects pre–B cells from DNA damage–induced apoptosis during immunoglobulin (Ig) light chain gene recombination. In the absence of BCL6, DNA breaks during Ig light chain gene rearrangement lead to excessive up-regulation of Arf and p53. As a consequence, the pool of new bone marrow immature B cells is markedly reduced in size and clonal diversity. We conclude that negative regulation of Arf by BCL6 is required for pre–B cell self-renewal and the formation of a diverse polyclonal B cell repertoire.


Blood | 2011

Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia

Eugene Park; Eun Ji Gang; Yao Te Hsieh; Paul Schaefer; Sanna Chae; Lars Klemm; Sandra Huantes; Mignon L. Loh; Edward M. Conway; Eun Suk Kang; Hong Hoe Koo; Wolf K. Hofmann; Nora Heisterkamp; Louis M. Pelus; Ganesan Keerthivasan; John D. Crispino; Michael Kahn; Markus Müschen; Yong Mi Kim

Relapse of drug-resistant acute lymphoblastic leukemia (ALL) has been associated with increased expression of survivin/BIRC5, an inhibitor of apoptosis protein, suggesting a survival advantage for ALL cells. In the present study, we report that inhibition of survivin in patient-derived ALL can eradicate leukemia. Targeting survivin with shRNA in combination with chemotherapy resulted in no detectable minimal residual disease in a xenograft model of primary ALL. Similarly, pharmacologic knock-down of survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide, in combination with chemotherapy eliminated drug-resistant ALL cells. These findings show the importance of survivin expression in drug resistance and demonstrate that survivin inhibition may represent a powerful approach to overcoming drug resistance and preventing relapse in patients with ALL.


Oncogene | 2014

Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia

Eun Ji Gang; Yao-Te Hsieh; Jennifer Pham; Yi Zhao; Cu Nguyen; Sandra Huantes; Eugene Park; Khatija Naing; Lars Klemm; Srividya Swaminathan; Edward M. Conway; Louis M. Pelus; John D. Crispino; Charles G. Mullighan; Michael McMillan; Markus Müschen; Michael Kahn; Yong-Mi Kim

Drug resistance in acute lymphoblastic leukemia (ALL) remains a major problem warranting new treatment strategies. Wnt/catenin signaling is critical for the self-renewal of normal hematopoietic progenitor cells. Deregulated Wnt signaling is evident in chronic and acute myeloid leukemia; however, little is known about ALL. Differential interaction of catenin with either the Kat3 coactivator CREBBP (CREB-binding protein (CBP)) or the highly homologous EP300 (p300) is critical to determine divergent cellular responses and provides a rationale for the regulation of both proliferation and differentiation by the Wnt signaling pathway. Usage of the coactivator CBP by catenin leads to transcriptional activation of cassettes of genes that are involved in maintenance of progenitor cell self-renewal. However, the use of the coactivator p300 leads to activation of genes involved in the initiation of differentiation. ICG-001 is a novel small-molecule modulator of Wnt/catenin signaling, which specifically binds to the N-terminus of CBP and not p300, within amino acids 1–110, thereby disrupting the interaction between CBP and catenin. Here, we report that selective disruption of the CBP/β- and γ-catenin interactions using ICG-001 leads to differentiation of pre-B ALL cells and loss of self-renewal capacity. Survivin, an inhibitor-of-apoptosis protein, was also downregulated in primary ALL after treatment with ICG-001. Using chromatin immunoprecipitation assay, we demonstrate occupancy of the survivin promoter by CBP that is decreased by ICG-001 in primary ALL. CBP mutations have been recently identified in a significant percentage of ALL patients, however, almost all of the identified mutations reported occur C-terminal to the binding site for ICG-001. Importantly, ICG-001, regardless of CBP mutational status and chromosomal aberration, leads to eradication of drug-resistant primary leukemia in combination with conventional therapy in vitro and significantly prolongs the survival of NOD/SCID mice engrafted with primary ALL. Therefore, specifically inhibiting CBP/catenin transcription represents a novel approach to overcome relapse in ALL.


Nature Immunology | 2015

Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

Srividya Swaminathan; Lars Klemm; Eugene Park; Elli Papaemmanuil; Anthony M. Ford; Soo-Mi Kweon; Daniel Trageser; Brian Hasselfeld; Nadine Henke; Jana Mooster; Huimin Geng; Klaus Schwarz; Scott C. Kogan; Rafael Casellas; David G. Schatz; Michael R. Lieber; Mel Greaves; Markus Müschen

Childhood acute lymphoblastic leukemia (ALL) can often be traced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution toward overt leukemia. The enzymes RAG1-RAG2 and AID, which diversify immunoglobulin-encoding genes, are strictly segregated in developing cells during B lymphopoiesis and peripheral mature B cells, respectively. Here we identified small pre-BII cells as a natural subset with increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B lymphopoiesis at the transition from the large pre-BII cell stage to the small pre-BII cell stage was exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrated that AID and RAG1-RAG2 drove leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood.


Nature | 2015

Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia.

Zhengshan Chen; Seyedmehdi Shojaee; Maike Buchner; Huimin Geng; Jae-Woong Lee; Lars Klemm; Björn Titz; Thomas G. Graeber; Eugene Park; Ying Xim Tan; Anne B. Satterthwaite; Elisabeth Paietta; Stephen P. Hunger; Cheryl L. Willman; Ari Melnick; Mignon L. Loh; Jae U. Jung; John E. Coligan; Silvia Bolland; Tak W. Mak; Andre Limnander; Hassan Jumaa; Michael Reth; Arthur Weiss; Clifford A. Lowell; Markus Müschen

B cells are selected for an intermediate level of B-cell antigen receptor (BCR) signalling strength: attenuation below minimum (for example, non-functional BCR) or hyperactivation above maximum (for example, self-reactive BCR) thresholds of signalling strength causes negative selection. In ∼25% of cases, acute lymphoblastic leukaemia (ALL) cells carry the oncogenic BCR-ABL1 tyrosine kinase (Philadelphia chromosome positive), which mimics constitutively active pre-BCR signalling. Current therapeutic approaches are largely focused on the development of more potent tyrosine kinase inhibitors to suppress oncogenic signalling below a minimum threshold for survival. We tested the hypothesis that targeted hyperactivation—above a maximum threshold—will engage a deletional checkpoint for removal of self-reactive B cells and selectively kill ALL cells. Here we find, by testing various components of proximal pre-BCR signalling in mouse BCR–ABL1 cells, that an incremental increase of Syk tyrosine kinase activity was required and sufficient to induce cell death. Hyperactive Syk was functionally equivalent to acute activation of a self-reactive BCR on ALL cells. Despite oncogenic transformation, this basic mechanism of negative selection was still functional in ALL cells. Unlike normal pre-B cells, patient-derived ALL cells express the inhibitory receptors PECAM1, CD300A and LAIR1 at high levels. Genetic studies revealed that Pecam1, Cd300a and Lair1 are critical to calibrate oncogenic signalling strength through recruitment of the inhibitory phosphatases Ptpn6 (ref. 7) and Inpp5d (ref. 8). Using a novel small-molecule inhibitor of INPP5D (also known as SHIP1), we demonstrated that pharmacological hyperactivation of SYK and engagement of negative B-cell selection represents a promising new strategy to overcome drug resistance in human ALL.


Blood | 2013

Integrin alpha4 blockade sensitizes drug resistant pre-B acute lymphoblastic leukemia to chemotherapy

Yao-Te Hsieh; EunJi Gang; Huimin Geng; Eugene Park; Sandra Huantes; Doreen Chudziak; Katrin Dauber; Schaefer P; Carlton Scharman; Hiroyuki Shimada; Seyedmehdi Shojaee; Lars Klemm; Reshmi Parameswaran; Mignon L. Loh; Eun Suk Kang; Hong Hoe Koo; Wolf-Karsten Hofmann; Andrade J; Crooks Gm; Cheryl L. Willman; Markus Müschen; T Papayannopoulou; Nora Heisterkamp; Halvard Bonig; Yong Mi Kim

Bone marrow (BM) provides chemoprotection for acute lymphoblastic leukemia (ALL) cells, contributing to lack of efficacy of current therapies. Integrin alpha4 (alpha4) mediates stromal adhesion of normal and malignant B-cell precursors, and according to gene expression analyses from 207 children with minimal residual disease, is highly associated with poorest outcome. We tested whether interference with alpha4-mediated stromal adhesion might be a new ALL treatment. Two models of leukemia were used, one genetic (conditional alpha4 ablation of BCR-ABL1 [p210(+)] leukemia) and one pharmacological (anti-functional alpha4 antibody treatment of primary ALL). Conditional deletion of alpha4 sensitized leukemia cell to nilotinib. Adhesion of primary pre-B ALL cells was alpha4-dependent; alpha4 blockade sensitized primary ALL cells toward chemotherapy. Chemotherapy combined with Natalizumab prolonged survival of NOD/SCID recipients of primary ALL, suggesting adjuvant alpha4 inhibition as a novel strategy for pre-B ALL.


Cancer Prevention Research | 2010

Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models.

Jason P. Yun; James W. Behan; Nora Heisterkamp; Anna Butturini; Lars Klemm; Lingyun Ji; John Groffen; Markus Müschen; Steven D. Mittelman

Obesity is associated with an increased incidence of many cancers, including leukemia, although it is unknown whether leukemia incidence is increased directly by obesity or rather by associated genetic, lifestyle, health, or socioeconomic factors. We developed animal models of obesity and leukemia to test whether obesity could directly accelerate acute lymphoblastic leukemia (ALL) using BCR/ABL transgenic and AKR/J mice weaned onto a high-fat diet. Mice were observed until development of progressive ALL. Although obese and control BCR/ABL mice had similar median survival, older obese mice had accelerated ALL onset, implying a time-dependent effect of obesity on ALL. Obese AKR mice developed ALL significantly earlier than controls. The effect of obesity was not explained by WBC count, thymus/spleen weight, or ALL phenotype. However, obese AKR mice had higher leptin, insulin, and interleukin-6 levels than controls, and these obesity-related hormones all have potential roles in leukemia pathogenesis. In conclusion, obesity directly accelerates presentation of ALL, likely by increasing the risk of an early event in leukemogenesis. This is the first study to show that obesity can directly accelerate the progression of ALL. Thus, the observed associations between obesity and leukemia incidence are likely to be directly related to biological effects of obesity. Cancer Prev Res; 3(10); 1259–64. ©2010 AACR.

Collaboration


Dive into the Lars Klemm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene Park

University of California

View shared research outputs
Top Co-Authors

Avatar

Huimin Geng

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cihangir Duy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhengshan Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Maike Buchner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yong-Mi Kim

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge