Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huimin Liu is active.

Publication


Featured researches published by Huimin Liu.


PLOS ONE | 2013

Protective effect of ginsenoside Rb1 against intestinal ischemia-reperfusion induced acute renal injury in mice.

Qian Sun; Qing-Tao Meng; Ying Jiang; Huimin Liu; Shaoqing Lei; Wating Su; Wei-na Duan; Yang Wu; Zhengyuan Xia; Zhong-yuan Xia

Ginsenoside Rb1 (RB1), the most clinically effective constituent of ginseng, possesses a variety of biological activities. The objectives of this study were to investigate the protective effects of RB1 and its underlying mechanism on renal injury induced by intestinal ischemia-reperfusion (IIR) in mice. RB1 was administered prior to inducing IIR achieved by occluding the superior mesenteric artery for 45 min followed by 120 min of reperfusion. All-trans-retinoic acid (ATRA) was used as an inhibitor of NF-E2-related factor-2 (Nrf2) signaling. Adult male C57BL/6J mice were randomly divided into six groups: (1) sham group, (2) IIR group, (3) RB1 group, (4) sham + ATRA group, (5) IIR + ATRA group, and (6) RB1 + ATRA group. Intestinal histology and pathological injury score were observed. Intestinal mucosal injury was also evaluated by measuring serum diamine oxidase (DAO). Renal injury induced by IIR was characterized by increased levels of histological severity score, blood urea nitrogen (BUN), serum creatinine (Scr) and neutrophil gelatinase-associated lipocalin (NGAL), which was accompanied with elevated renal TUNEL-positive cells and the Bcl-2/Bax expression ratio. RB1 significantly reduced renal injury and apoptosis as compared with IIR group, which was reversed by ATRA treatment. Immunohistochemistry and Western blot analysis demonstrated that RB1 significantly upregulated the protein expression of heme oxygenase-1 (HO-1) and Nrf2, which were attenuated by ATRA treatment. Taken together, these results suggest that the protective effects of RB1 pretreatment against renal injury induced by IIR are associated with activation of the Nrf2/ anti-oxidant response element (ARE) pathway.


Clinical Science | 2016

Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats: role of the PI3K/Akt and JAK2/STAT3 pathways

Rui Xue; Shaoqing Lei; Zhong-yuan Xia; Yang Wu; Qing-Tao Meng; Liying Zhan; Wating Su; Huimin Liu; Jinjin Xu; Zhenzhen Liu; Bin Zhou; Zhengyuan Xia

Patients with diabetes are vulnerable to MI/R (myocardial ischaemia/reperfusion) injury, but are not responsive to IPostC (ischaemic post-conditioning) which activates PI3K (phosphoinositide 3-kinase)/Akt (also known as PKB or protein kinase B) and JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathways to confer cardioprotection. We hypothesized that increased cardiac PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K/Akt, is responsible for the loss of diabetic heart sensitivity to IPostC cardioprotecton. In STZ (streptozotocin)-induced Type 1 diabetic rats subjected to MI/R (30 min coronary occlusion and 120 min reperfusion), the post-ischaemic myocardial infarct size, CK-MB (creatine kinase-MB) and 15-F2t-isoprostane release, as well as cardiac PTEN expression were significantly higher than those in non-diabetic controls, concomitant with more severe cardiac dysfunction and lower cardiac Akt, STAT3 and GSK-3β (glycogen synthase kinase 3β) phosphorylation. IPostC significantly attenuated post-ischaemic infarct size, decreased PTEN expression and further increased Akt, STAT3 and GSK-3β phosphorylation in non-diabetic, but not in diabetic rats. Application of the PTEN inhibitor BpV (bisperoxovanadium) (1.0 mg/kg) restored IPostC cardioprotection in diabetic rats. HPostC (hypoxic post-conditioning) in combination with PTEN gene knockdown, but not HPostC alone, significantly reduced H/R (hypoxia/reoxygenation) injury in cardiac H9c2 cells exposed to high glucose as was evident from reduced apoptotic cell death and JC-1 monomer in cells, accompanied by increased phosphorylation of Akt, STAT3 and GSK-3β. PTEN inhibition/gene knockdown mediated restoration of IPostC/HPostC cardioprotection was completely reversed by the PI3K inhibitor wortmannin, and partially reversed by the JAK2 inhibitor AG490. Increased cardiac PTEN, by impairing PI3K/Akt and JAK2/STAT3 pathways, is a major mechanism that rendered diabetic hearts not responsive to post-conditioning cardioprotection.


Oxidative Medicine and Cellular Longevity | 2013

Nitroglycerine-induced nitrate tolerance compromises propofol protection of the endothelial cells against TNF-α: the role of PKC-β2 and NADPH oxidase.

Shaoqing Lei; Wating Su; Huimin Liu; Jinjin Xu; Zhong-yuan Xia; Qing-Jun Yang; Xin Qiao; Yun Du; Liangqing Zhang; Zhengyuan Xia

Continuous treatment with organic nitrates causes nitrate tolerance and endothelial dysfunction, which is involved with protein kinase C (PKC) signal pathway and NADPH oxidase activation. We determined whether chronic administration with nitroglycerine compromises the protective effects of propofol against tumor necrosis factor (TNF-) induced toxicity in endothelial cells by PKC- β2 dependent NADPH oxidase activation. Primary cultured human umbilical vein endothelial cells were either treated or untreated with TNF- α (40 ng/mL) alone or in the presence of the specific PKC- β2 inhibitor CGP53353 (1 μM)), nitroglycerine (10 μM), propofol (100 μM), propofol plus nitroglycerin, or CGP53353 plus nitroglycerine, respectively, for 24 hours. TNF-α increased the levels of superoxide, Nox (nitrate and nitrite), malondialdehyde, and nitrotyrosine production, accompanied by increased protein expression of p-PKC-β2, gP91phox, and endothelial cell apoptosis, whereas all these changes were further enhanced by nitroglycerine. CGP53353 and propofol, respectively, reduced TNF-α induced oxidative stress and cell toxicity. CGP53353 completely prevented TNF- α induced oxidative stress and cell toxicity in the presence or absence of nitroglycerine, while the protective effects of propofol were neutralized by nitroglycerine. It is concluded that nitroglycerine comprises the protective effects of propofol against TNF-α stimulation in endothelial cells, primarily through PKC-β2 dependent NADPH oxidase activation.


Experimental Diabetes Research | 2015

Effects of Glucose Concentration on Propofol Cardioprotection against Myocardial Ischemia Reperfusion Injury in Isolated Rat Hearts

Xinhua Yao; Yalan Li; Mingzhe Tao; Shuang Wang; Liangqing Zhang; Jiefu Lin; Zhengyuan Xia; Huimin Liu

The anesthetic propofol confers cardioprotection against myocardial ischemia-reperfusion injury (IRI) by reducing reactive oxygen species (ROS). However, its cardioprotection on patients is inconsistent. Similarly, the beneficial effect of tight glycemic control during cardiac surgery in patients has recently been questioned. We postulated that low glucose (LG) may promote ROS formation through enhancing fatty acid (FA) oxidation and unmask propofol cardioprotection during IRI. Rat hearts were isolated and randomly assigned to be perfused with Krebs-Henseleit solution with glucose at 5.5 mM (LG) or 8 mM (G) in the absence or presence of propofol (5 μg/mL) or propofol plus trimetazidine (TMZ). Hearts were subjected to 35 minutes of ischemia followed by 60 minutes of reperfusion. Myocardial infarct size (IS) and cardiac CK-MB were significantly higher in LG than in G group (P < 0.05), associated with reduced left ventricular developed pressure and increases in postischemic cardiac contracture. Cardiac 15-F2t-isoprostane was higher, accompanied with higher cardiac lipid transporter CD36 protein expression in LG. Propofol reduced IS, improved cardiac function, and reduced CD36 in G but not in LG. TMZ facilitated propofol cardioprotection in LG. Therefore, isolated heart with low glucose lost sensitivity to propofol treatment through enhancing FA oxidation and TMZ supplementation restored the sensitivity to propofol.


Oxidative Medicine and Cellular Longevity | 2013

Transient Acidosis during Early Reperfusion Attenuates Myocardium Ischemia Reperfusion Injury via PI3k-Akt-eNOS Signaling Pathway

Xin Qiao; Jinjin Xu; Qing-Jun Yang; Yun Du; Shaoqing Lei; Zhi-Hong Liu; Xinwei Liu; Huimin Liu

In this paper, we concluded that transient acidosis reperfusion conferred cardioprotection against myocardial ischemia reperfusion injury in isolated rat hearts through activating PI3K-Akt-eNOS pathway.


Laboratory Investigation | 2016

Ischemic post-conditioning attenuates acute lung injury induced by intestinal ischemia-reperfusion in mice: role of Nrf2.

Qing-Tao Meng; Chen Cao; Yang Wu; Huimin Liu; Wei Li; Qian Sun; Rong Chen; Yong-Guang Xiao; Ling-Hua Tang; Ying Jiang; Yan Leng; Shaoqing Lei; Chris C. Lee; Devin M Barry; Xiangdong Chen; Zhong-yuan Xia

Intestinal ischemic post-conditioning (IPo) protects against lung injury induced by intestinal ischemia–reperfusion (IIR) partly through promotion of expression and function of heme oxygenase-1 (HO-1). NF-E2-related factor-2 (Nrf2) is a key transcription factor that interacts with HO-1 and regulates antioxidant defense. However, the role of Nrf2 in IPo protection of IIR-induced pulmonary injury is not completely understood. Here we show that IPo significantly attenuated IIR-induced lung injury and suppressed oxidative stress and systemic inflammatory responses. IPo also increased the expression of both Nrf2 and HO-1. Consistently, the beneficial effects of IPo were abolished by ATRA and Brusatol, potent inhibitors of Nrf2. Moreover, the Nrf2 agonist t-BHQ showed similar activity as IPo. Taken together, our data suggest that Nrf2 activity, along with HO-1, plays an important role in the protective effects of IPo against IIR-induced acute lung injury.


International Journal of Molecular Medicine | 2017

Transcription factors Nrf2 and NF-κB contribute to inflammation and apoptosis induced by intestinal ischemia-reperfusion in mice

Qing-Tao Meng; Rong Chen; Cheng Chen; Ke Su; Wei Li; Ling-Hua Tang; Huimin Liu; Rui Xue; Qian Sun; Yan Leng; Jiabao Hou; Yang Wu; Zhong-yuan Xia

Intestinal ischemia/reperfusion (IIR) is a common pathological event associated with intestinal injury and apoptosis with high mortality. Nuclear factor (NF)-E2-related factor-2 (Nrf2) is a key transcription factor that interacts with NF-κB and has a vital anti-inflammatory effect. However, whether Nrf2 has a role in IIR-induced apoptosis and the possible underlining mechanisms, such as modulation of the inflammation regulation pathway, have remained to be fully elucidated. In the present study, IIR was identified to cause significant intestinal injury and apoptosis, with high expression levels of inflammatory cytokines, as well as the apoptotic proteins B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3, while simultaneously decreasing the protein levels of Bcl-2. The effect was more pronounced after pretreatment of the animals with all-trans retinoic acid or brusatol, potent inhibitors of Nrf2. t-Butylhydroquinone, an Nrf2 activator, significantly attenuated IIR-induced intestinal injury and apoptosis, with inhibition of the overexpression of the inflammatory cytokines, Bax and caspase-3 protein and partial restoration of Bcl-2 protein expression. Taken together, these results indicated that increased Nrf2 expression reduced IIR-induced intestinal apoptosis and that the protective function of Nrf2 may be based on its anti-inflammatory effects through the inhibition of the NF-κB pathway.


Molecular Medicine Reports | 2016

LY294002 prevents lipopolysaccharide‑induced hepatitis in a murine model by suppressing IκB phosphorylation

Zhize Chen; Huimin Liu; Shaoqin Lei; Bo Zhao; Zhong-yuan Xia

Although fulminant hepatitis represents a ubiquitous human health problem, there is a lack of effective therapeutic strategies that have few side‑effects and the precise mechanisms underlying fulminant hepatitis are not fully understood. Phosphoinositide 3‑kinase (PI3K) is a pivotal kinase known to regulate inflammatory responses in hepatic diseases. Although previous research indicates that PI3K is involved in cardiac diseases, including myocardial infarction, it currently remains unclear whether the inhibition of PI3K is essential for ameliorating the severity of lipopolysaccharide (LPS)‑induced hepatitis. The aim of the present study was to investigate whether pharmacological blockade of PI3K ameliorates the development of LPS‑induced murine acute hepatic injury. A murine model of LPS‑induced acute hepatic injury was used to investigate the therapeutic effect of the pan‑PI3K inhibitor, LY294002 on murine fulminant hepatitis and to investigate potential underlying mechanisms. The current report presents the in vivo role of LY294002 in protecting the mice from fulminant hepatitis. LY294002 was observed to exert significant protective effects on the liver by reducing the activities of alanine aminotransferase and aspartate aminotransferase, as well as by improving the histological architecture of the liver. In LPS‑induced hepatitis, treatment with LY294002 clearly inhibited intrahepatic synthesis of various disease‑relevant proinflammatory cytokines, including tumor necrosis factor‑α, interleukin (IL)‑6, IL‑1β and interferon‑γ. Furthermore, LY294002 was observed to significantly inhibit IκB phosphorylation in LPS‑injured mouse liver samples. Therefore, LY294002 may protect the liver from LPS‑induced injury by inhibition of the IκB‑nuclear factor κ‑light‑chain‑enhancer of activated B cell dependent signaling pathway. Thus, the current report provides evidence that LY294002 exerts potent effects against LPS‑induced hepatic injury, indicating its potential therapeutic value for the treatment of acute hepatitis.


Experimental Diabetes Research | 2018

Glycine Protects H9C2 Cardiomyocytes from High Glucose- and Hypoxia/Reoxygenation-Induced Injury via Inhibiting PKCβ2 Activation and Improving Mitochondrial Quality

Yuan Zhang; Wating Su; Qiongxia Zhang; Jinjin Xu; Huimin Liu; Jun Luo; Liying Zhan; Zhong-yuan Xia; Shaoqing Lei

Background Patients with diabetes are more vulnerable to myocardial ischemia reperfusion injury (IRI), which is involved in PKCβ2 activation and mitochondrial dysfunction. Glycine has been documented as a cytoprotective agent to attenuate diabetes-related abnormalities and reduce myocardial IRI, but the underlying mechanisms are still unclear. We determined whether glycine could attenuate high glucose- (HG-) and hypoxia/reoxygenation- (H/R-) induced injury by inhibiting PKCβ2 activation and improving mitochondrial quality in cultured H9C2 cells. Methods H9C2 cells were either exposed to low glucose (LG) or HG conditions with or without treatment of glycine or CGP53353 (a selective inhibitor of PKCβ2) for 48 h, then subjected to 4 h of hypoxia followed by 2 h of reoxygenation (H/R). Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration were detected using corresponding commercial kits. Mitochondrial quality control-related proteins (LC-3II, Mfn-2, and Cyt-C) and PKCβ2 activation were detected by Western blot. Results HG stimulation significantly decreased cell viability and SOD activity and increased LDH release, MDA production, and PKCβ2 activation as compared to LG group, all of which changes were further increased by H/R insult. Glycine or CGP53353 treatment significantly reduced the increase of LDH release, MDA production, PKCβ2 activation, and Cyt-C expression and the decrease of cell viability, SOD activity, MMP, Mfn-2 expression, and LC-3II/LC-3I ratio induced by HG and H/R stimulation. Conclusions Supplementary glycine protects H9C2 cells from HG- and H/R-induced cellular injury by suppressing PKCβ2 activation and improving mitochondria quality.


Biochemical and Biophysical Research Communications | 2018

Diosgenin inhibited the expression of TAZ in hepatocellular carcinoma

Zhize Chen; Jingjing Xu; Yang Wu; Shaoqing Lei; Huimin Liu; Qing-Tao Meng; Zhong-yuan Xia

Emerging evidence has supported that TAZ (transcriptional co-activator with PDZ binding motif), one transcription co-activator in Hippo signaling pathway, plays an oncogenic role in liver carcinogenesis. Targeting TAZ could be a potential therapeutic approach for liver cancer patients. In the current study, we aim to determine whether diosgenin could be an inhibitor of TAZ in liver cancer cells. We found that diosgenin inhibited the expression of TAZ in liver cancer cells. Moreover, we found that diosgenin inhibited cell growth, induced apoptosis, suppressed cell migration and invasion in part via inhibition of TAZ in liver cancer cells. Our study provides the evidence to support that diosgenin could be a potential agent for treating human liver cancer.

Collaboration


Dive into the Huimin Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge