Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jinjin Xu is active.

Publication


Featured researches published by Jinjin Xu.


BioMed Research International | 2011

Ginsenoside Rb1 preconditioning enhances eNOS expression and attenuates myocardial ischemia/reperfusion injury in diabetic rats.

Rui Xia; Bo Zhao; Yang Wu; Jiabao Hou; Li Zhang; Jinjin Xu; Zhong-yuan Xia

Diabetes mellitus is associated with decreased NO bioavailability in the myocardium. Ginsenoside Rb1 has been shown to confer cardioprotection against ischemia reperfusion injury. The aim of this study was to investigate whether Ginsenoside Rb1 exerts cardioprotective effects during myocardial ischemia-reperfusion in diabetic rats and whether this effect is related to increase the production of NO via enhancing eNOS expression in the myocardium. The myocardial I/R injury were induced by occluding the left anterior descending artery for 30 min followed by 120 min reperfusion. An eNOS inhibitor L-NAME or Rb1 were respectively administered 25 min or 10 min before inducing ischemia. Ginsenoside Rb1 preconditioning reduced myocardial infarct size when compared with I/R group. Ginsenoside Rb1 induced myocardial protection was accompanied with increased eNOS expression and NO concentration and reduced plasma CK and LDH (P < 0.05). Moreover, the myocardial oxidative stress and tissue histological damage was attenuated by Ginsenoside Rb1 (P < 0.05). L-NAME abolished the protective effects of Ginsenoside Rb1. It is concluded that Ginsenoside Rb1 protects against myocardium ischemia/reperfusion injury in diabetic rat by enhancing the expression of eNOS and increasing the content of NO as well as inhibiting oxidative stress.


Journal of Surgical Research | 2011

Ischemic Postconditioning Attenuates Lung Reperfusion Injury and Reduces Systemic Proinflammatory Cytokine Release Via Heme Oxygenase 1

Bo Xu; Xia Gao; Jinjin Xu; Shaoqing Lei; Zhong-yuan Xia; Yuan Xu; Zhengyuan Xia

OBJECTIVE Systemic inflammatory response following ischemia-reperfusion injury (IRI) to a specific organ may cause injuries in multiple remote organs. The emergence of ischemic postconditioning (IPO) provides a potential method for experimentally and clinically attenuating various types of organ postischemic injuries. We have shown that IPO can attenuate lung IRI by up-regulating the protein expression of heme oxygenase-1(HO-1). This study tested the hypothesis that IPO attenuates systemic inflammatory responses following lung IRI by activating HO-1. METHODS Anaesthetized and mechanically ventilated adult Sprague-Dawley rats were randomly assigned to one of the following groups (n = 8 each): the sham-operated control group, the ischemia-reperfusion (IR) group (40 min of left-lung ischemia and 120 min of reperfusion), the IPO group (three successive cycles of 30-s reperfusion per 30-s occlusion before restoring full perfusion), and the zinc protoporphyrin IX (ZnP) plus IPO group (ZnP, an inhibitor of HO-1, was injected intraperitoneally at 20 mg/kg 24 h prior to the experiment, and the rest of the procedures were similar to that of the IPO group). Lung injury was assessed by arterial blood gas analysis, wet-to-dry lung weight ratio and tissue histologic and biochemical changes. The lung tissue and plasma levels of lipid peroxidation were determined by measuring the contents of malondialdehyde (MDA) production. Protein expression of HO-1 was determined by Western blotting. Pulmonary neutrophil was counted. Lung tissue myeloperoxidase (MPO) activity as well as plasma levels of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukines 6 and 8 (IL-6, IL-8) were determined by spectrophotography. RESULTS Lung ischemia-reperfusion led to severe lung pathologic morphologic changes and increased pulmonary MDA production, neutrophil count, and MPO activity and reduced arterial oxygen partial pressure (all P < 0.05 IR versus sham), accompanied with a compensatory increase in HO-1 protein and activity. Plasma levels of TNF-α, IL-6, and IL-8 were increased in the IR group (all P < 0.05 versus sham). IPO attenuated or prevented all the above changes, except that it further increased lung HO-1 activity. Treatment with ZnP abolished all the protective effects of postconditioning. CONCLUSION Postconditioning attenuated pulmonary neutrophil accumulation and activation and lung IRI and reduced systemic inflammatory responses by activating HO-1.


BioMed Research International | 2011

Shen-Fu Injection Preconditioning Inhibits Myocardial Ischemia-Reperfusion Injury in Diabetic Rats: Activation of eNOS via the PI3K/Akt Pathway

Yang Wu; Zhong-yuan Xia; Qing-Tao Meng; Jie Zhu; Shaoqing Lei; Jinjin Xu; Juan Dou

The aim of this paper is to investigate whether Shen-fu injection (SFI), a traditional Chinese medicine, could attenuate myocardial ischemia-reperfusion (MI/R) injury in diabetes. Streptozotocin-induced diabetic rats were randomly assigned to the Sham, I/R, SFI preconditioning, and SFI plus wortmannin (a phosphatidylinositol 3-kinase inhibitor) groups. After the treatment, hearts were subjected to 30 min of coronary artery occlusion and 2 h reperfusion except the Sham group. Myocardial infarct size and cardiomyocytes apoptosis were increased significantly in MI/R group as compared with the Sham group. SFI preconditioning significantly decreased infarct size, apoptosis, caspase-3 protein expression, MDA level in myocardial tissues, and plasma level of CK and LDH but increased p-Akt, p-eNOS, bcl-2 protein expression, and SOD activity compared to I/R group. Moreover, SFI-induced cardioprotection was abolished by wortmannin. We conclude that SFI preconditioning protects diabetic hearts from I/R injury via PI3K/Akt-dependent pathway.


Oxidative Medicine and Cellular Longevity | 2013

Hyperglycemia-Induced Inhibition of DJ-1 Expression Compromised the Effectiveness of Ischemic Postconditioning Cardioprotection in Rats

Min Liu; Bin Zhou; Zhong-yuan Xia; Bo Zhao; Shaoqing Lei; Qing-Jun Yang; Rui Xue; Yan Leng; Jinjin Xu; Zhengyuan Xia

Ischemia postconditioning (IpostC) is an effective way to alleviate ischemia and reperfusion injury; however, the protective effects seem to be impaired in candidates with diabetes mellitus. To gain deep insight into this phenomenon, we explored the role of DJ-1, a novel oncogene, that may exhibit powerful antioxidant capacity in postconditioning cardioprotection in a rat model of myocardial ischemia reperfusion injury. Compared with normal group, cardiac DJ-1 was downregulated in diabetes. Larger postischemic infarct size as well as exaggeration of oxidative stress was observed, while IpostC reversed the above changes in normal but not in diabetic rats. DJ-1 was increased after ischemia and postconditioning contributed to a further elevation; however, no alteration of DJ-1 was documented in all subgroups of diabetic rats. Alteration of the cardioprotective PI3K/Akt signaling proteins may be responsible for the ineffectiveness of postconditioning in diabetes. There is a positive correlation relationship between p-Akt and DJ-1 but a negative correlation between infarct size and DJ-1, which may partially explain the interaction of DJ-1 and IpostC cardioprotection. Our result indicates a beneficial role of DJ-1 in myocardial ischemia reperfusion. Downregulation of cardiac DJ-1 may be responsible for the compromised diabetic heart responsiveness to IpostC cardioprotection.


Clinical Science | 2016

Selective inhibition of PTEN preserves ischaemic post-conditioning cardioprotection in STZ-induced Type 1 diabetic rats: role of the PI3K/Akt and JAK2/STAT3 pathways

Rui Xue; Shaoqing Lei; Zhong-yuan Xia; Yang Wu; Qing-Tao Meng; Liying Zhan; Wating Su; Huimin Liu; Jinjin Xu; Zhenzhen Liu; Bin Zhou; Zhengyuan Xia

Patients with diabetes are vulnerable to MI/R (myocardial ischaemia/reperfusion) injury, but are not responsive to IPostC (ischaemic post-conditioning) which activates PI3K (phosphoinositide 3-kinase)/Akt (also known as PKB or protein kinase B) and JAK2 (Janus kinase 2)/STAT3 (signal transducer and activator of transcription 3) pathways to confer cardioprotection. We hypothesized that increased cardiac PTEN (phosphatase and tensin homologue deleted on chromosome 10), a major negative regulator of PI3K/Akt, is responsible for the loss of diabetic heart sensitivity to IPostC cardioprotecton. In STZ (streptozotocin)-induced Type 1 diabetic rats subjected to MI/R (30 min coronary occlusion and 120 min reperfusion), the post-ischaemic myocardial infarct size, CK-MB (creatine kinase-MB) and 15-F2t-isoprostane release, as well as cardiac PTEN expression were significantly higher than those in non-diabetic controls, concomitant with more severe cardiac dysfunction and lower cardiac Akt, STAT3 and GSK-3β (glycogen synthase kinase 3β) phosphorylation. IPostC significantly attenuated post-ischaemic infarct size, decreased PTEN expression and further increased Akt, STAT3 and GSK-3β phosphorylation in non-diabetic, but not in diabetic rats. Application of the PTEN inhibitor BpV (bisperoxovanadium) (1.0 mg/kg) restored IPostC cardioprotection in diabetic rats. HPostC (hypoxic post-conditioning) in combination with PTEN gene knockdown, but not HPostC alone, significantly reduced H/R (hypoxia/reoxygenation) injury in cardiac H9c2 cells exposed to high glucose as was evident from reduced apoptotic cell death and JC-1 monomer in cells, accompanied by increased phosphorylation of Akt, STAT3 and GSK-3β. PTEN inhibition/gene knockdown mediated restoration of IPostC/HPostC cardioprotection was completely reversed by the PI3K inhibitor wortmannin, and partially reversed by the JAK2 inhibitor AG490. Increased cardiac PTEN, by impairing PI3K/Akt and JAK2/STAT3 pathways, is a major mechanism that rendered diabetic hearts not responsive to post-conditioning cardioprotection.


Oxidative Medicine and Cellular Longevity | 2013

Nitroglycerine-induced nitrate tolerance compromises propofol protection of the endothelial cells against TNF-α: the role of PKC-β2 and NADPH oxidase.

Shaoqing Lei; Wating Su; Huimin Liu; Jinjin Xu; Zhong-yuan Xia; Qing-Jun Yang; Xin Qiao; Yun Du; Liangqing Zhang; Zhengyuan Xia

Continuous treatment with organic nitrates causes nitrate tolerance and endothelial dysfunction, which is involved with protein kinase C (PKC) signal pathway and NADPH oxidase activation. We determined whether chronic administration with nitroglycerine compromises the protective effects of propofol against tumor necrosis factor (TNF-) induced toxicity in endothelial cells by PKC- β2 dependent NADPH oxidase activation. Primary cultured human umbilical vein endothelial cells were either treated or untreated with TNF- α (40 ng/mL) alone or in the presence of the specific PKC- β2 inhibitor CGP53353 (1 μM)), nitroglycerine (10 μM), propofol (100 μM), propofol plus nitroglycerin, or CGP53353 plus nitroglycerine, respectively, for 24 hours. TNF-α increased the levels of superoxide, Nox (nitrate and nitrite), malondialdehyde, and nitrotyrosine production, accompanied by increased protein expression of p-PKC-β2, gP91phox, and endothelial cell apoptosis, whereas all these changes were further enhanced by nitroglycerine. CGP53353 and propofol, respectively, reduced TNF-α induced oxidative stress and cell toxicity. CGP53353 completely prevented TNF- α induced oxidative stress and cell toxicity in the presence or absence of nitroglycerine, while the protective effects of propofol were neutralized by nitroglycerine. It is concluded that nitroglycerine comprises the protective effects of propofol against TNF-α stimulation in endothelial cells, primarily through PKC-β2 dependent NADPH oxidase activation.


Oxidative Medicine and Cellular Longevity | 2013

Transient Acidosis during Early Reperfusion Attenuates Myocardium Ischemia Reperfusion Injury via PI3k-Akt-eNOS Signaling Pathway

Xin Qiao; Jinjin Xu; Qing-Jun Yang; Yun Du; Shaoqing Lei; Zhi-Hong Liu; Xinwei Liu; Huimin Liu

In this paper, we concluded that transient acidosis reperfusion conferred cardioprotection against myocardial ischemia reperfusion injury in isolated rat hearts through activating PI3K-Akt-eNOS pathway.


Life Sciences | 2018

Remifentanil attenuates lipopolysaccharide-induced oxidative injury by downregulating PKCβ2 activation and inhibiting autophagy in H9C2 cardiomyocytes

Shaoqing Lei; Yuan Zhang; Wating Su; Lu Zhou; Jinjin Xu; Zhong-yuan Xia

Aim: Lipopolysaccharide (LPS)‐induced myocardial injury is a leading cause of death in patients with sepsis, which is associated with excessive activation of PKC&bgr; (especially PKC&bgr;2) and autophagy. Remifentanil, a &mgr;‐opioid receptor agonist, is well demonstrated to have beneficial effects during sepsis, but the underlying mechanisms are still unknown. The present study was designed to investigate the roles of remifentanil in PKC&bgr;2 and autophagy in LPS‐treated cardiomyocytes. Main methods: H9C2 cardiomyocytes were treated with or without remifentanil (2.5 &mgr;M), PKC&bgr;2 inhibitor CGP53353 (CGP, 1 &mgr;M) or autophagy inhibitor 3‐methyladenine (3‐MA, 10 &mgr;M) in the presence or absence of LPS (10 &mgr;g/mL). Key findings: LPS exposure for 24 h led to a significant increase in cell death, LDH release and MDA production in H9C2 cardiomyocytes, accompanied with decreased SOD activity and excessive PKC&bgr;2 activation and autophagy indicated by enhanced Beclin‐1 and LC‐3II expression and decreased p62 expression. All these changes were attenuated by remifentanil intervention. In addition, inhibition of LPS‐induced PKC&bgr;2 activation by CGP or autophagy inhibitor 3‐MA has similar effects to remifentanil. Significance: Remifentanil protects H9C2 cardiomyocytes against LPS‐induced oxidative injury, as a result of downregulating PKC&bgr;2 activation and inhibiting autophagy, partially.


Experimental Diabetes Research | 2018

Glycine Protects H9C2 Cardiomyocytes from High Glucose- and Hypoxia/Reoxygenation-Induced Injury via Inhibiting PKCβ2 Activation and Improving Mitochondrial Quality

Yuan Zhang; Wating Su; Qiongxia Zhang; Jinjin Xu; Huimin Liu; Jun Luo; Liying Zhan; Zhong-yuan Xia; Shaoqing Lei

Background Patients with diabetes are more vulnerable to myocardial ischemia reperfusion injury (IRI), which is involved in PKCβ2 activation and mitochondrial dysfunction. Glycine has been documented as a cytoprotective agent to attenuate diabetes-related abnormalities and reduce myocardial IRI, but the underlying mechanisms are still unclear. We determined whether glycine could attenuate high glucose- (HG-) and hypoxia/reoxygenation- (H/R-) induced injury by inhibiting PKCβ2 activation and improving mitochondrial quality in cultured H9C2 cells. Methods H9C2 cells were either exposed to low glucose (LG) or HG conditions with or without treatment of glycine or CGP53353 (a selective inhibitor of PKCβ2) for 48 h, then subjected to 4 h of hypoxia followed by 2 h of reoxygenation (H/R). Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration were detected using corresponding commercial kits. Mitochondrial quality control-related proteins (LC-3II, Mfn-2, and Cyt-C) and PKCβ2 activation were detected by Western blot. Results HG stimulation significantly decreased cell viability and SOD activity and increased LDH release, MDA production, and PKCβ2 activation as compared to LG group, all of which changes were further increased by H/R insult. Glycine or CGP53353 treatment significantly reduced the increase of LDH release, MDA production, PKCβ2 activation, and Cyt-C expression and the decrease of cell viability, SOD activity, MMP, Mfn-2 expression, and LC-3II/LC-3I ratio induced by HG and H/R stimulation. Conclusions Supplementary glycine protects H9C2 cells from HG- and H/R-induced cellular injury by suppressing PKCβ2 activation and improving mitochondria quality.


Molecular Biology Reports | 2011

Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats

Yang Wu; Zhong-yuan Xia; Juan Dou; Li Zhang; Jinjin Xu; Bo Zhao; Shaoqing Lei; Huimin Liu

Collaboration


Dive into the Jinjin Xu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge